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Abstract

Dense networks with weighted connections often exhibit a community like structure, where although
most nodes are connected to each other, different patterns of edge weights may emerge depending
on each node’s community membership. We propose a new framework for generating and estimating
dense weighted networks with potentially different connectivity patterns across different commu-
nities. The proposed model relies on a particular class of functions which map individual node
characteristics to the edges connecting those nodes, allowing for flexibility while requiring a small
number of parameters relative to the number of edges. By leveraging the estimation techniques, we
also develop a bootstrap methodology for generating new networks on the same set of vertices, which
may be useful in circumstances where multiple data sets cannot be collected. Performance of these
methods are analyzed in theory, simulations, and real data.
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1 Introduction

We are interested in modeling dense weighted networks with real, continuous-valued weights
Wuv for pairs of nodes u, v ∈ V , where V denotes the set of all nodes (vertices) in the
network. Denseness means that the edge Wuv is present for all pairs u, v where u 6= v, though
we will also discuss the case where a proportion of the weights are “missing.” Examples
include structural brain networks (as in Figure 1) and correlation networks. Focusing on
dense weighted networks, what are natural modeling approaches? At the simplest level, if
a network has no meaningful structure, one could postulate that

f (Wuv) = εuv, (1)

where εuv are i.i.d. N (0,1) random variables and f is a function mapping Wuv to the
(standard) “normal” space. One can take

f (w) = Φ
−1(G(w)), (2)

where G is the CDF of Wuv and Φ−1 is the inverse CDF of N (0,1). In practice, we can
substitute the empirical CDF for the unknown true G.

Most networks of interest, including most real networks, however, have some kind of
structure. Two common structures involve communities, broadly understood as sets of



2 Benjamin Leinwand and Vladas Pipiras

particular nodes whose edges exhibit similar connectivity patterns, and degree correction,
broadly understood as certain nodes having consistently more edges (or, in dense weighted
networks, greater edge weights) than other nodes. A simple way to capture degree cor-
rection, which we refer to as “sociability” (or SC, for short) in the “normal” space is to
set

f (Wuv) = αZu +βZv +σεuv

= αΦ
−1
1 (Ψu)+βΦ

−1
1 (Ψv)+σεuv =: h(Ψu,Ψv)+σεuv, (3)

where Zu and Zv are i.i.d. N (0,1) variables, associated with nodes u and v respectively, and
α,β and σ are other model parameters. In the equivalent expression, Ψu are i.i.d. U(0,1)
random variables (uniform on the interval (0,1)), and the function h(x,y) = αΦ−1(x)+
βΦ−1(y) will be allowed to take more general forms below. In the “normal” space, the
function h(Φ(zu),Φ(zv)) = αzu +β zv is linear. In the case where α,β > 0, a larger value
of Zu will tend to make Wuv values larger across all v’s, inducing a sociability structure that
reflects degree correction. The term h(Ψu,Ψv) in (3) is thus the SC term in the model. The
term σεuv is thought to consist of independent variables.

Models of the type (3) appear in (Fosdick & Hoff, 2015), who also include a multiplica-
tive interaction term. In a departure from that work, we allow for community structures
and more general functions h than (3). After exponentiation, and at the conditional mean
level, note also that (3) yields

E(e f (Wuv)|Z) = eαZueβZv e
σ2
2 =: θuθvµ. (4)

Specifications of the form (4) are common for connection probabilities in unweighted
degree corrected or SC models. See degree corrected stochastic block models (DCBMs)
in (Karrer & Newman, 2011), (Gao et al., 2018), or their extensions, popularity adjusted
stochastic block models (PABMs) in (Sengupta & Chen, 2017), (Noroozi et al., 2021).
While in the DCBM, “sociability” parameters are global, in the PABM, each node has a
possibly different sociability parameter for each community in the network. The mod-
els considered here are close in spirit to PABMs and we draw from the techniques in
(Noroozi et al., 2021) to analyze them. However, our focus is on weighted networks
where information may be encoded in the patterns of the edge weights rather than the
existence of particular edges in a given network. We shall thus also consider community
versions of the model (3), where the function h and the parameter σ can depend on the
pair of communities to which u and v belong. Importantly, according to this definition,
communities are not necessarily defined by higher or lower propensities to connect with
entire other communities, but rather by particular patterns of edge weights which represent
“preferences” for specific nodes over others within the same community.

As noted above, we will go beyond the “linear” sociability patterns encoded by the
particular function h shown in (3) while, perhaps surprisingly, remaining in the “normal”
space. To motivate this extension, instead write the SC term in (3) as

h(Ψu,Ψv) = dΦ
−1(H(Ψu,Ψv)), (5)

where d ∈ [0,1] and H(x,y) = Φ(c−1αΦ−1(x)+c−1βΦ−1(y)) with c =
√

α2 +β 2. α and
β modulate the influence of y relative to x. The constant c serves a normalizing role so
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that H(Ψu,Ψv) is ensured to be U(0,1), and hence the value of h(Ψu,Ψv) resides in the
“normal” space with variance d2. Plugging (5) into the last term of (3) and constraining
d2 +σ2 = 1 ensures the resulting values of f (Wuv) are in the (standard) “normal” space.

The critical observation, though, is that plugging (5) into (3) while constraining d2 +

σ2 = 1 will output values in the (standard) “normal” space for any function H where
H(Ψu,Ψv) ∼ U(0,1), including functions that bear no similarity to the normal distribu-
tion as shown beneath (5). We shall consider several broad classes of such H-functions.
Examples of the sociability patterns resulting from various considered H-functions are
depicted in Figure 2 below. The key point is that while H could be associated with quite
different SC patterns, the SC term (5) would nonetheless reside in the “normal” space.
Used in conjunction with (2), which transforms an arbitrary (and possibly nonparametric)
distribution of edge weights, this constructs a map between Ψ values and edge weights
via the (standard) “normal” space. In summary, our key contributions at the model level
concern:

• Focus on dense weighted networks;
• Possibility of community structure;
• Multiple nearly arbitrary distributions of edge weights;
• Flexible sociability patterns through H-functions.

Modeling questions will also be addressed in the paper below. Figure 1 illustrates our
modeling approach. It shows a network where the edge weights are the logs of the white
matter fiber counts connecting two regions in a patient’s brain. In this case, the two assumed
communities are the left and right hemispheres of the brain. We often reorder the nodes
first by community, and then within each community, sort the nodes by within community
degree. This is what’s seen in the second plot from the left of Figure 1. There are instances
where one might want to sort the nodes differently, for example, if there is a core-periphery
structure, it might be preferable to sort nodes first by community then by weight of edges
connected to nodes in the core. In the third plot from the left, we show an “estimate” of the
SC term from our method, with the same ordering as in the second plot. Finally, a bootstrap
replicate network of the original network is displayed in the right plot, again reordered for
easier viewing. Notably, based on the different contour shapes in the bottom left and the
top right sections of the third plot, it can be seen (using the plots in Figure 2 as a point of
reference) that the intra-left hemisphere edges have a different best fitting H-function than
the intra-right hemisphere edges.

There are other models designed to generate weighted networks. The Weighted Stochas-
tic Block Model introduced by (Aicher et al., 2013) includes degree correction only with
regard to an edge’s existence, not for modeling the weights of particular edges. The gen-
eralized exponential random graph model from (Desmarais & Cranmer, 2012) is indeed a
very general model, but requires a lot of advanced knowledge to specify the appropriate
model for estimation if given a specific network. As noted above, (Fosdick & Hoff, 2015)
includes a form that looks superficially like the linear models discussed in this paper, but
the higher order dynamics described when incorporating multiplicative interaction effects
bears little resemblance to the “non-linear” models presented here, and doesn’t accomodate
communities. (Peixoto, 2018) looks for general forms of community structure, but not of
the kind proposed here, as their edge weights depend only on community membership
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Fig. 1. From left to right: a structural brain network of the log values of white matter fiber counts
between 148 regions. The same network reordered by within community degree. The similarly
reordered “estimate” of the structural network. A reordered bootstrap replicate network of the
observed network.

without regard for other nodal features. For other work on weighted networks, see the
melding of of mutual information and common neighbors in (Zhu & Xia, 2016), estimates
of nodes’ perceptions of one another to predict signed edge weights in (Kumar et al., 2016),
and leveraging graph metrics to “denoise” weighted networks in (Spyrou & Escudero,
2018). Related work in the unweighted setting can be found in (Bartlett, 2017), which
deploys pairwise measures of node association to model binary edges, and the use of
copulas in (Fan et al., 2016).

As seen in Figure 1, for a given network, we can use our model to estimate a data
generating process and subsequently generate synthetic data via a bootstrap-type method.
This procedure can create “new” networks which replicate the structure of the observed
network even without a priori knowing the functional form of the edge weight generating
process between particular communities. As in the case of using brain networks as a diag-
nostic aid, when networks are used as inputs to other analyses, if data collection is difficult,
these synthetic network replicates may be used as supplemental data. Additionally, taking
a cue from the rightmost plot of Figure 1, the random variation between bootstrap replicate
networks can serve as a sensitivity test for results using the original network, allowing for
greater robustness even with limited data, as in the classical bootstrap.

The rest of this paper is structured as follows. In Section 2, we develop theory for
generating the proposed class of networks, along with details on H-functions in Section
3. In Section 4, we discuss methods for estimating the generating processes of observed
networks when the community memberships of each node are known or have been esti-
mated. In Section 5, we build on the estimation procedures from Section 4 to generate new
synthetic networks that are plausible stand-ins for real networks, in the vein of the boot-
strap. In Section 6, we discuss how to adapt community detection techniques to networks
of this kind. In Section 7, we discuss applying our methods under slight departures from
the main models of interest. In Section 8, we apply our method to real data and compare
the performance to other existing models. The appendix discusses technical details and
extensions.

2 Model formulation

Let v1, . . . ,vn be the vertices (nodes) in a dense network with undirected and weighted
edges, and no self-loops. Each node belongs to exactly one community, 1, . . . ,K. Hence-
forth, u and v will refer to nodes, and i and j will refer to communities, e.g. u ∈ i,v ∈ j.
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In our random graph model, a node u has a “sociability” (i.e. “popularity”, degree
correction) parameter Ψu. These parameters are assumed to be i.i.d. U(0,1). Let Wuv

denote the weight of the edge connecting nodes u and v. We primarily focus on the case
with continuous-valued Wuv. At the most general level, we examine random graphs of the
following form: for u,v such that u ∈ i, v ∈ j, suppose

fi j(Wuv) = hi j(Ψu,Ψv)+σi jεuv, (6)

where fi j is a monotonically increasing function over the range of Wuv, hi j is a monotonic
function in its 2 arguments, εuv are error terms with E(εuv) = 0, E(ε2

uv) = 1 and σi j ≥ 0.
Those terms with i j subscripts are particular to edges where one of the nodes is in com-
munity i and the other is in community j, while terms with subscripts uv are idiosyncratic
for that particular edge. In the most flexible version of the model, as in the PABM, each
node may have K different Ψ values, each one for parametrizing edge weights connecting
to nodes in a particular community. A special case of interest is the linear model

fi j(Wuv) = γi j +αi jh1i j(Ψu)+βi jh2i j(Ψv)+σi jεuv, (7)

where γi j,αi j,βi j ∈ R, E(hki j(Ψ)) = 0, and E(hki j(Ψ)2) = 1 for k = 1,2 and Ψ∼ U(0,1).
We refer to (7) as a linear sociability model (LSM) and to (6) where hi j is not linear
as a nonlinear sociability model (NSM). Examples and discussion below will provide
motivation and intuition about these models.

Under monotonicity assumptions, note that the observed edge weight Wuv is monotone
in the sociability parameters of nodes u and v. As a special case, letting αi j = βi j = 0 in
the LSM, node sociability plays no role in the weight of the edge between nodes u and v,
rather the weights are generated independently from some distribution, as in a Weighted
Stochastic Block Model. Similarly, letting σi j = 0 would generate a network completely
determined by random node sociabilities.

In what follows, Φµ,σ2 will denote the CDF of a N (µ,σ2) distribution and Φσ2 :=
Φ0,σ2 . Furthermore, though each pair of communities i and j are assumed to possibly be
connected via a function hi j (along with γi j,αi j,βi j, etc.), to simplify notation, we will drop
the subscript in our notation, assuming that the discussion always concerns the relevant pair
of communities i, j based on context, where i may or may not be the same as j.

Example 1. (Normal LSM.) This is (7) with

f (Wuv) = γ +αΦ
−1
1 (Ψu)+βΦ

−1
1 (Ψv)+σεuv

= γ +αZu +βZv +σεuv, (8)

where Zu ∼N (0,1). The function f can be the identity (in which case Wuv is Gaussian
itself, assuming normality of εuv) or some other transformation, such as f (W ) = log(W ).

One natural choice of f in (6) or (7), after a common practice of transforming data to
standard normal, is to consider

f (w) = Φ
−1
1 (G(w)), (9)

where G represents the CDF of {Wuv : u ∈ i,v ∈ j}. We pursue this case in the following
canonical example that we use for NSMs. The example relies upon H-functions, a concept
that will be discussed in greater detail in Section 3.
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Example 2. (H-Normal NSM.) This is (6) with

Φ
−1
1 (G(Wuv)) =

1√
1+σ2

Φ
−1
1 (H(Ψu,Ψv))+

σ√
1+σ2

εuv, (10)

where G is again the CDF of Wuv, εuv are i.i.d. N (0,1), and σ ≥ 0. Furthermore, H(x,y)
is an H-function having the following key properties (see Section 3 for more details):
H(Ψu,Ψv) ∼ U(0,1) for independent U(0,1) random variables Ψu,Ψv, and H(x,y) is
monotone in both arguments. The first property ensures that

1√
1+σ2

Φ
−1
1 (H(Ψu,Ψv))+

σ√
1+σ2

εuv =: Zuv (11)

are N (0,1) variables, and hence by inverting (10), the variables

Wuv = G−1(Φ1(Zuv)) (12)

indeed have G as their CDF.

Note that the H-Normal NSM also has the Normal LSM as a special case. Using the
H-function

H(x,y) = Φ1+ρ2(Φ−1
1 (x)+Φ

−1
ρ2 (y)), (13)

one observes that H(Ψu,Ψv)∼ U(0,1) since Φ
−1
1 (Ψu)∼N (0,1),Φ−1

ρ2 (Ψv)∼N (0,ρ2),

and hence Φ
−1
1 (Ψu)+Φ

−1
ρ2 (Ψv) ∼N (0,1+ρ2). With the choice (13) plugged into (10),

the latter model becomes

Φ
−1
1 (G(Wuv)) =

1√
1+σ2

Φ
−1
1 (H(Ψu,Ψv))+

σ√
1+σ2

εuv

=
1√

1+σ2

(
Φ
−1
1 (Φ1+ρ2(Φ−1

1 (Ψu)+Φ
−1
ρ2 (Ψv)))

)
+

σ√
1+σ2

εuv

=
1√

1+σ2
√

1+ρ2
Φ
−1
1 (Ψu)+

ρ√
1+σ2

√
1+ρ2

Φ
−1
1 (Ψv)+

σ√
1+σ2

εuv, (14)

by using the identities Φ−1
a (c) =

√
aΦ
−1
1 (c) and Φb(c) =

Φ1(c)√
b

. Note that (14) is a normal-
ized version of the Normal LSM (3) where γ is set to 0. Examples of H-functions which
do not correspond to Normal LSM will be given in Section 3. NSMs are a large class, but
some other potentially interesting examples can be constructed in a similar manner to the
H-Normal NSM above, as is detailed in the technical appendix.

While H-Normal NSMs indeed take advantage of many features of the normal distri-
bution, they are actually not very restrictive. Instead of representing the CDF of a linear
combination of normal random variables as in (13), the H-function in (10) can represent the
CDF of some other weighted combination of random variables, in which case the under-
lying “shape” of the connections between communities i and j will look very different, as
can be seen in Figure 2. This paper will focus on H-Normal NSMs because all H-Normal
NSMs incorporate normally distributed errors.

Finally, we introduce a bit more terminology. In the LSM (7), we distinguish the follow-
ing cases with specific terms:

• α > 0, β > 0: positive association,
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• α < 0, β < 0: negative association,
• α ·β < 0: Simpson association,
• α 6= 0, β = 0: projection onto 1st coordinate,
• α = 0, β 6= 0: projection onto 2nd coordinate.

3 H-functions

We begin by introducing some terminology.

Definition 1. (Positive association.) A function H : (0,1)×(0,1)→ (0,1) is an H-function
with positive association if:

1. H is non-decreasing in both arguments;
2.
∫∫

H(x,y)≤z dxdy = z, for all z ∈ (0,1).

The term “positive association” refers to the fact that, when considered across commu-
nities, such models would tend to produce larger weights for nodes in the two commu-
nities with simultaneously larger sociabilities. The monotonicity condition 1 captures the
idea of node sociability as discussed above. Condition 2 is equivalent to requiring that
H(Ψu,Ψv) = Ψuv is a U(0,1) random variable. In contrast with copulas, the output of a
positively associated H-function is not bounded above by the minimum of the inputs.

Definition 2. (Negative association; Simpson association.) A function H : (0,1)×(0,1)→
(0,1) is an H-function with negative association if H(1− x,1− y) is an H-function with
positive association. A function H : (0,1)× (0,1)→ (0,1) is an H-function with Simpson
association if H(x,1− y) or H(1− x,y) is an H-function with positive association.

If Ψu is a uniform random variable, then 1−Ψu is also a uniform random variable, so
negative association also ensures that H(Ψu,Ψv) = Ψuv is a uniform random variable. A
similar observation can be made for Simpson association. The term “negative association”
arises because the monotonicity of H results in the fact that, when looking across the
communities, nodes with greater node sociabilities actually tend to have smaller edge
weights. Simpson associations are so named because they indicate a localized area where
certain broader trends of the network may be inverted. This error at the local level when
extrapolating from global phenomena is reminiscent of Simpson’s paradox.

A property shared by all H-functions is that H(Ψu,Ψv) is a U(0,1) random variable for
such independent random variables Ψu,Ψv. There are many ways to achieve this, but one
quite general construction which we found to be flexible and interesting is as follows. Note
that a random variable F−1(Ψ) has the CDF F for a U(0,1) random variable Ψ. Take now
two CDFs F1,F2 and let F1,2 = F1 ∗F2 be their convolution CDF. Then F−1

1 (Ψu)+F−1
2 (Ψv)

has the same distribution as F−1
1,2 (Ψuv). This suggests setting

H(x,y) = F1,2(F−1
1 (x)+F−1

2 (y)). (15)

By construction, this function satisfies the condition 2 of Definition 1, but one can easily
check that condition 1 holds as well. The function (13) is an example of H-function in the
form of (15) with an explicit convolution F1,2. Besides the normal distributions, choosing
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Fig. 2. Plots of examples of H-functions.

F1 and F2 to be exponential, Cauchy, or uniform would also give an explicit form for F1,2,
although (15) is far more general than these simple cases imply.

Figure 2 illustrates some of the different kinds of contours that can be created using
H-functions of the form in (15). The resulting weighted bipartite subnetworks between 2
different communities generated using these H-functions in H-Normal NSM (10) would
inherit similar connectivity patterns, albeit with normally distributed “errors” included. In
this case, the x and y axes represent the values of x and y, respectively, each running from
.01 to .99 by increments of .01, and the colors represent the output of the H-function. From
left to right, the first plot shows the values of H(x,y) = Φ1+ρ2(Φ−1

1 (x)+Φ
−1
ρ2 (y)) where

ρ = 1. The second plot corresponds to this function with ρ = 5. The third plot depicts
(15) where F1 and F2 are both exponential distributions with a rate parameter 1, and F1,2

is a gamma distribution with shape parameter of 2 and rate parameter of 1. Finally, the
rightmost plot is from the H-function (15) where F1 and F2 have density

f (x) =

{
−x−.5ex

Γ(.5) , x < 0,

0, otherwise.

In this case, F1,2 can be checked to be given by

F1,2(z) =

{
ez, z < 0,

1, z≥ 0.

These different images show that H-functions (15) make a rather flexible class. Other
H-functions include maps to the first or second coordinates, which would give perfectly
vertical or horizontal contours.

4 Estimation with known communities

In this section, we discuss estimation of the different models discussed in Section 2, while
assuming that the true community labels {i} of the nodes in the network are known. As
far as estimation goes, we do not impose that each node’s estimated Ψ̂u value is constant
globally, but rather only constant over each community. It may be desirable in future work
to align these Ψ̂u estimates over the whole network, but the presented estimation processes
are more flexible. Even using this assumption, the model parameters to be estimated depend
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on the specific model in question. Given a particular set of community labels, we can
treat each subnetwork of the larger network – where we analyze the connectivity patterns
between 2 different communities i and j – as a bipartite graph, and any subnetwork where
we look at the connectivity within a single community as a smaller network.

4.1 Estimation for Normal LSM

We assume henceforth that i and j are fixed and work on one smaller subnetwork. It is
assumed that the transformation f in (8) has already been performed, so without loss of
generality, f (Wuv) = Wuv. We also assume for simplicity that γ = 0. Then, the model (8)
can be expressed after exponentiation as

eWuv = eαZueβZveσεuv = eαZueβZve
σ2
2

(
eσεuv

Eeσεuv

)
, (16)

where the last term within the parentheses has an expected value of 1. The structure of
(16) enables the use of rank-one Nonnegative Matrix Factorization (NMF) to estimate the
parameters of interest. NMF approximates the matrix represented by eWuv as the decompo-
sition ab′ where a = (au) and b = (bv) are column vectors with positive entries. Taking the
log of this approximation yields the approximate identity

log(au)+ log(bv)≈ αZu +βZv +
σ2

2
, (17)

which suggests the following estimators for the model parameters of interest:

α̂ = SD(log(a)), β̂ = SD(log(b)),

Ẑu =
log(au)−log(a)

α̂
, Ψ̂u = Φ1(Ẑu), Ẑv =

log(bv)−log(b)
β̂

, Ψ̂v = Φ1(Ẑv),

where SD stands for the standard deviation, and log(x) indicates the sample mean of log(x).
In light of (8), we also set σ̂ = SD(Wuv−α̂Ẑu− β̂ Ẑv). An adjustment for subnetworks where
all nodes are in the same community is given in Appendix B.

A concentration inequality for a Normal LSM bounding the difference between the best
possible estimates of the network’s SC to the true generating SC process without any
“error” included is given in Appendix A.

4.2 Extension to LSM

The difference between (8) and (7), ignoring extra subscripts, is that rather than having
standard normal random variables ascribed to each node, (7) includes random variables
h1(Ψu) and h2(Ψv) with possibly different forms, albeit with identical first 2 moments.
The procedure described in Section 4.1 will still apply with one exception. The relation
(17) cannot directly estimate Ẑu or Ẑv, but rather ĥ1(Ψu) and ĥ2(Ψv). After getting these
estimates, a distribution can be fit to the data points while assuming that Ψu and Ψv are
truly distributed uniformly over the unit interval. The best fitting distribution can then be
inverted to estimate Ψ̂u and Ψ̂v. Finally, the parameter σ is estimated to be the standard
deviation of Wuv− α̂ ĥ1(Ψu)− β̂ ĥ2(Ψv).
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4.3 Estimation for H-Normal NSM

Though using NMF is appropriate when the function h in (6) is linear, it is unsuitable for
nonlinear functions, which require an alternative methodology. For an estimator of Gi j,
by the construction of the graph in the H-Normal NSM (10), one could naturally set the
empirical CDF of the weights {Wuv : u ∈ i,v ∈ j}. We make a small modification to this
and instead set

Ĝ(w) =
1

n+1 ∑
Wuv:u∈i,v∈ j

1{Wuv≤w} , (18)

where n is the number of edges Wuv : u ∈ i,v ∈ j. That is, we divide by n + 1 in (18)
instead of n. There are two reasons for this. First, note that the model in (10) implies a
distorted but generally linear relationship between Φ

−1
1 (G(Wuv)) and Φ

−1
1 (H(Ψu,Ψv)). We

shall use this relation to estimate the function H, and at the empirical level, shall consider
Ĝ(Wuv) in place of G(Wuv). Dividing by n+ 1 ensures that Ĝ(Wuv) < 1, so Φ

−1
1 (Ĝ(Wuv))

is finite. Second, modulo any dependence issues, if one thinks of (an appropriate scaling
of) H(Ψu,Ψv) as representing the order statistics of n uniform random variables on (0,1),
recall that the kth order statistic follows a Beta(k,n+1−k) distribution, which has a mean
of k

n+1 . At the mean level, it is then natural to place Ĝ(Wuv) at multiples of 1
n+1 , not 1

n .
In fact, we use one other modification to the definition (18) when the values Wuv repeat,
which can be found in Appendix B.

For node sociabilities Ψu, we define them locally based on two communities i and j (and
possibly i = j so there is only one community). For node u ∈ i, consider

D j(u) = ∑
v:v∈ j

Φ
−1
1 (Ĝ(Wuv)). (19)

We think of D j(u) as a “local sociability statistic” of u, since it looks at how u connects
to one community j, rather than the whole network. By the construction of the NSM
model (10) and the properties of positively associated H-functions, if H is positively
associated, one expects the ordering of the local sociability statistics D j(u)’s of those nodes
in community i to match the ordering of the sociabilities Ψu. This suggests setting

Ψ̂
( j)
u =

1
ni +1 ∑

u′:u′∈i
1{D j(u′)≤D j(u)}, (20)

where ni is the number of u′ : u′ ∈ i. That is, defining Ψ̂
( j)
u as the rescaled ordering of the

“local sociability statistic” of u in its community i with respect to community j. As in
(18), note the division by ni + 1 in (20), placing the Ψ̂

( j)
u values at the expected values of

the order statistics of ni draws from a U(0,1) distribution. When the association of H is
negative, we expect the ordering of these local sociability statistics D j(u) to have a strong
negative correlation with the true Ψu values. In other words, if the true H has negative
association, we expect the ordering of the local sociability statistics D j(u)’s of those nodes
in community i to match the ordering of 1−Ψu. The estimation of H described next will
therefore adapt automatically to any form of the association of H.

We view the estimation of H as choosing the best candidate from a set H of H-
functions. This set can be parametric (e.g. parametrized by ρ2 in (13)) or consist of several
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H-functions. More precisely, we set:

Ĥ, σ̂ = argmin
H∈H ,σ≥0

∑
u∈i,v∈ j

(
Φ
−1
1 (Ĝ(Wuv))−

1√
1+σ2

Φ
−1
1 (H(Ψ̂

( j)
u ,Ψ̂

(i)
v ))

)2

. (21)

The optimization in (21) is carried out numerically over different functional forms of H,
and the associated minimizing choice of σ is taken as the estimated σ̂ .

4.4 Estimated network sociability

There may be a desire to examine the SC of the network implied by the parameter esti-
mates. In this case, the “estimated edge values” are given by

Ŵuv = argmin
w

∣∣∣∣Φ−1
1 (Ĝ(w))− 1√

1+ σ̂2
Φ
−1
1 (Ĥ(Ψ̂

( j)
u ,Ψ̂

(i)
v ))

∣∣∣∣ . (22)

These estimates seek to smooth out the effects of any “errors” observed over particular
edges in the original network. As σ̂ grows, 1√

1+σ̂2
Φ
−1
1 (Ĥ(Ψ̂

( j)
u ,Ψ̂

(i)
v )) shrinks to 0, so the

estimate Ŵuv tends toward the median edge weight in the subnetwork. If a subnetwork has
a large estimated σ̂ value, the range of the estimated subnetwork will be much smaller
than the range of the observed subnetwork. By contrast, bootstrap replicates of the kind
described in Section 5 below are expected to have the same variance structure as the
original network.

4.5 Spurious patterns

Note that the H-Normal NSM (10) allows for the independent edges εuv only in the limit
σ → ∞. In practice, even when only independent edges εuv are present, a finite value of
σ will be estimated, and a spurious sociability pattern will be “found.” (This is discussed
in connection with Figure 4 below). This scenario could be flagged by examining suitable
MSEs.

Using results of (21), the MSE in “normal” space is defined as

1
N ∑

u∈i,v∈ j
(Φ−1

1 (Ĝ(Wuv))−
1√

1+ σ̂2
Φ
−1
1 (Ĥ(Ψ̂

( j)
u ,Ψ̂

(i)
v )))2, (23)

where N represents the number of edges connecting nodes in i to nodes in j. If σ̂ → ∞,
then by construction, MSE → 1. With no upper bound on σ , in practice we expect the
MSE for independent edges to be slightly smaller than 1. We can compare the observed
MSE of a subnetwork to the MSE values we get when edge weights really are generated
as independent εuv.

Where overfitting is suspected in a particular subnetwork, we can draw completely
random N (0,1) edge weights and create a fictional subnetwork of the same size as the
observed subnetwork. From there, we repeat the estimation process to calculate the MSE
from this synthetic subnetwork, with the additional restriction that, using the terminology
of (15), F1 and F2 of the estimated H-function for the fictitious subnetwork must be of the
same distributional family as the F1 and F2 in the Ĥ estimated for the real data. We can
generate many fictitious subnetworks, and if the MSE obtained from the true subnetwork
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is smaller than some large proportion of the fictional MSE values, the estimates from (22)
should be retained. Otherwise, we replace all estimated edge weights in the subnetwork
with the median edge weight in the subnetwork.

5 Bootstrap

In certain cases, such as brain scans, it can be difficult to obtain multiple measurements of
the same network where the underlying structure broadly remains the same, but there may
be some variation at the level of particular edges. For this reason, we want a procedure
which can generate new networks that can mimic the structure of real networks, much the
same way the classical bootstrap can be used to generate new samples from a single sample.
In Section 4, we estimated a network using H-functions. In this section, we extend our
construction to generate new network samples that still allow for both flexible connectivity
patterns between communities as well as node specific degree correction effects.

Assuming the community assignments are correct, pairwise functions Ĥ and parameters
σ̂ are estimated based on the estimated sociabilities Ψ̂

( j)
u . To get a bootstrapped edge

weight, we can draw a new ε̃uv ∼N (0,1) in (10) and set

W̃uv = argmin
w

∣∣∣∣Φ−1
1 (Ĝ(w))−

(
1√

1+ σ̂2
Φ
−1
1 (Ĥ(Ψ̂

( j)
u ,Ψ̂

(i)
v ))+

σ̂√
1+ σ̂2

ε̃uv

)∣∣∣∣ . (24)

When the true σ is small, σ̂ can be estimated to be 0. However, for the purposes of the
bootstrap, it is useful to include randomness; otherwise each bootstrap replicate network
will be identical. In the case where σ̂ < c (a small positive value), we can replace σ̂ in (24)
with the MSE given by (23).

If, after performing the procedure described in Section 4.5, we believe there is no rela-
tionship between edge weights and their incident nodes, for each bootstrap replicate, we
instead draw every edge at random with replacement from the relevant edge set. In that
case

W̃uv = argmin
w

∣∣∣Φ−1(Ĝ(w))− ε̃uv

∣∣∣ .
6 Community detection

Estimates above depend on assigning each node into its community. In this work, commu-
nity i is defined as a subset of nodes which all share a common fi j, hi j and σi j for each
particular corresponding community j, as given in (6). As nodes in the same community
share functions to generate edge weights, patterns in edge weights can be used to cluster
nodes into communities. As estimating Ĝ requires defining the estimated node set in each
community, perhaps surprisingly, the clustering techniques discussed in this section do not
depend on Ĝ, but instead rely upon a measure of cluster goodness.

6.1 Measure accounting for sociability

Letting σ = 0 and fixing any two communities i and j, for any model discussed in Section
2, with u1,u2 ∈ i, v1,v2 ∈ j, if Wu1v1 >Wu1v2 , then so too is Wu2v1 >Wu2v2 . Nodes in the same
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community i share an “order of preferences” over nodes in another particular community
j, as reflected by persistently greater edge weights. Even allowing for positive σ , a good
clustering for these models should reflect a relatively consistent order of preferences. Since
this order of preferences over nodes in j is expected for all nodes in community, the local
degree of each node v in community j with respect to community i,

di(v) = ∑
u′:u′∈i

Wu′v,

should also display this ordering. For example, in any plot in Figure 2, comparing any set
of columns, the rightmost column (representing the node with the larger Ψ value) never
has a smaller edge weight value than the corresponding location in the left column. That
is, if Wu1v1 > Wu1v2 , then di(v1) > di(v2). For each node u ∈ i and each community j, we
can then define a node-community correlation as

Ci j(u) = corr{(di(v),Wuv) : v ∈ j,u 6= v}.

For a good clustering with estimated communities { î}, fixing any node u∈ î and looking
at all nodes v ∈ ĵ, the edge weights Wuv should be correlated with dî(v). A good estimated
clustering should result in large, positive Cî ĵ values everywhere. Even so, when σ > 0,
even nodes in the same community i may exhibit minor variation in preferences over nodes
in community j. Additionally, we could ensure perfect correlation between a node’s edge
weights and its community’s preferences if we made that node its own community, but that
would be overly prescriptive. While individual Cî ĵ values may be useful for diagnosing
localized issues, in a larger network, it is preferable to aggregate these values to get a
system-wide overview of clustering success. For a particular assignment of communities,
we define our measure as:

L({ î}, K̂) =
K̂

∑
î=1

K̂

∑
ĵ=1

Cî ĵ(u)×
(

1−
√

SD(Cî ĵ(u))
)
× ((nî−2)(n ĵ−2))+× (1+1{î= ĵ}),

(25)
where K̂ is the total number of estimated communities in the network, and nî is the number
of nodes in community î. The average and standard deviation of Cî ĵ(u) in (25) are over

u ∈ î.
Nodes placed in the same community should exhibit a shared ordering of preferences

over nodes in any other community, represented by the average of the Ci j values. In addition
to rewarding clusterings that show consistent ordering of preferences, the measure L also
prefers clusterings with less variation in Ci j values for a fixed i and j, which can reflect
a shared σ value. By multiplying by ((ni − 2)(n j − 2))+, there are increasing returns
to scale in the size of communities. Without increasing returns to scale, nodes could be
clustered into many dyads or triads, all producing consistently large absolute Ci j values,
but this clustering would lead to overfitting. Under L, communities of size one or two are
worthless. Finally, within community subnetwork performance is counted twice to balance
the influence of all subnetworks. Consider a network with 2 communities of 52 nodes
each. Without this doubling, the two within community subnetworks would each have a
maximum possible contribution of 2500 to the measure, while the between community
subnetwork would have a maximum possible contribution of 5000.



14 Benjamin Leinwand and Vladas Pipiras

The measure L tries to find the appropriate balance between size and homogeneity of the
estimated communities. Increasing returns to scale are crucial because they induce larger
communities, even if they contain some nodes with minor deviations from the community’s
collective ordering of preferences. However, if multiple nodes have preferences at odds
with the rest of their assigned community, it would become beneficial to separate this
set of crosscutting nodes into their own splinter community to improve the totality of the
measure. Of course, just as modularity may not be ideal for community detection in every
network model, in cases where node sociabilities do not matter (akin to a standard SBM),
this measure will not be effective at recovering the true communities.

It’s worth noting here that absence of an ordering of preferences can also be a valid
shared ordering of preferences. In the simplest case, all weights between communities
i and j can be identical, or they can all be generated as i.i.d. random variables. This
still may be useful for clustering. For example, if communities i and j have identical
functions to generate both within community and between community edges, it may be
inappropriate to call them two different communities. However if the edges between i and a
third community k are generated completely at random, but the generating process of edges
between j and k has some kind of association, that should distinguish nodes in community
i from nodes in community j.

In Appendices C.2 and C.4, we present 2 community detection algorithms which try to
maximize the measure L. One is stochastic, while the other is bottom-up and deterministic.
Experimentally, there have been occasions where each algorithm outperforms the other.
Unless otherwise noted, community estimates presented in figures in this paper are the L
maximizing clustering given by one of these algorithms.

7 Robustness of estimation procedure

The estimation pipeline described above is tailor made for the dense weighted networks
described in Section 2. However, the procedure still appears to succeed for related networks
which are not explicitly NSMs or LSMs.

7.1 Sparser networks

While the discussion so far has centered on dense networks, in this section, we propose
an extension where many edges may be missing, and there are two layers to the generative
model. In this instance, it is necessary to distinguish between the adjacency network, which
is the set of present edges, and the set of weights of those edges. In principle, the set of
communities in the adjacency network could be different than the set of communities in
the weights, but we only consider the case where they are the same. However, we do allow
potentially different sets of sociability parameters. To generate a network with missing
edges, we can use existing models such as the SBM, DCBM, or PABM to generate the
adjacency network. To generate the edge weights, first we generate a dense weighted
network as in this paper, then take the Hadamard product of the adjacency network matrix
and the dense weighted network.

Moving from generation to estimation, we can extract the adjacency network of an ob-
served network by replacing any non-zero weights with 1, then use established community
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detection and estimation methods to cluster the nodes and estimate the probability of an
edge’s presence. With these estimated community memberships, we can iteratively use a
modified version of the estimation method described in Section 4 to estimate the generative
process for the edge weights, as shown in Algorithm 1. First, we estimate the model on
the observed network while ignoring missing (zero valued) edges. Then, we replace any
missing edges in the original network with the estimates from our model. We then re-
estimate the model based on this updated network, and continue to update those edges
which were missing in the original network. This iteration is useful because a node with
larger edge weights could, by chance, have many missing edges, which would deflate its
estimated Ψ̂ value. With multiple iterations, those missing values should be replaced by
better and better estimates, which should hopefully mitigate the impact of these missing
values on our estimate of the edge weight generating process. This progression has been
observed in simulations, and the performance of Algorithm 1 is discussed in Section 8.3.

Algorithm 1: Estimating a subnetwork with missing edges

Result: Êk, Ĥ, σ̂

Input: W , ε

1 k = 0; W0 = W ; ∆ = ∞; Ê0 = zero matrix of appropriate size;
2 while ∆ > ε do
3 Estimate Ĥ and σ̂ for Wk using the methods described in Section 4.3. When k

=0, ignore any zero valued (missing) edges in all numbered equations;
4 k++;
5 Using the estimated Ĥ and σ̂ , generate all edges in Êk via (22);
6 ∆ = ||Êk− Êk−1||2F ;
7 For any zero valued (missing) edge in W0, substitute in the corresponding edge

from Êk to calculate Wk;
end

After this estimation process completes, we can move back from estimation to gener-
ation. The upshot of this entire process is that given one weighted network with missing
edges, we can estimate both the adjacency network generating process and the edge weight
generating process. This information can serve to generate new weighted networks with
missing edges, using (24) to get a synthetic edge weight network, and using the estimated
SBM-type parameters based on the observed adjacency network to generate a synthetic
adjacency network. Finally, take the Hadamard product of these two matrices to generate
a synthetic network where the distributions for each edge weight match the estimated
distribution in the original network, including treating 0 as a missing edge.
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7.2 Noisy edge weights

Our estimation method appears to work even when a dense network is not generated as an
H-Normal NSM. Rearranging (10),

Wuv = G−1
(

Φ1

(
1√

1+σ2
Φ
−1
1 (H(Ψu,Ψv))+

σ√
1+σ2

εuv

))
.

If G is a distribution with a maximum, that means no edge weight can exceed that maxi-
mum. However, if we include another term ζuv ∼N (0,σ2

ζ
) into

Wuv = G−1
(

Φ1

(
1√

1+σ2
Φ
−1
1 (H(Ψu,Ψv))+

σ√
1+σ2

εuv

))
+ζuv,

then, if σ2
ζ
> 0, each edge weight is distributed over R. As can be seen in Appendix D.4, the

estimation procedure still captures the underlying network dynamics in this case, although
the estimates degrade as σ2

ζ
increases.

8 Simulations

For each simulation, we include a description and a figure showing the original network
and the estimated underlying network, where the clustering choice is the estimated measure
L maximizing clustering using the algorithms presented in Appendix C.

8.1 Varying σ

Figure 3 depicts variations on and estimates of an underlying network with 4 communities
of 37 nodes each. In plot A, the network is displayed with σ = 0. Within community edges
are drawn from a uniform distribution with a maximum of 150, while between community
edges are drawn from a uniform distribution with a maximum of 100. Node sociability
parameters for both communities range from .05 to .95 in increments of .025. The H-
function is the same as that used for the rightmost plot in Figure 2, though since the between
community edges have negative association, the inputs to that H-function are 1−Ψu and
1−Ψv. This network is ordered so one can visually discern communities and connectivity
patterns. Even so, the first step is to estimate community structure, as node ordering does
not impact the community detection algorithm. The resulting estimated network is shown
below the original and looks very similar to the original network.

Where plot A uses (10) with σ = 0, plot B uses σ = .05 everywhere, leaving the network
looking smudged. The estimate looks like a smoothed version of the actual observed
network, albeit somewhat “blurrier” than the underlying network seen in plot A. This
performance degradation with increasing σ is to be expected. In plot C, σ = .15 for
within community edges, and σ = .2 for between community edges, and the estimate looks
slightly worse than in plot B.

8.2 Disassortative network with spurious patterns

Figure 4 introduces several changes. First, the communities are disassortative, as between
community edges are larger than within community edges. Second, the within community
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Fig. 3. A single H-Normal NSM with different σ values. The estimate of each network is shown
below the original network being estimated.

edge weights are i.i.d. Third, the between community edge weights are generated using
randomly generated Gamma parameters for each node, and using those as inputs into a
negative binomial distribution. This is not generated as an H-Normal NSM, yet we still
use our estimation procedure. Fourth, the nodes are not ordered. If the true community
orderings are not known a priori, a network may look like the left plot of Figure 4. Fol-
lowing estimation, the communities are clustered correctly, and the between community
estimate broadly looks smoother than the original network. The initial estimated network
appears to amplify spurious structure in the within community edges, giving some order
to the pure randomness seen in the original network. Utilizing the procedure discussed in
Section 4.5, within community edges for subnetworks with spurious patterns are replaced
by the median value of that subnetwork’s edge weights.

Fig. 4. Network with spurious pattern of within community edges. From left to right: original,
reordered, initial estimate, final estimate.
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8.3 Missing edges

Figure 5 shows the network in Figure 3 after deleting many edges at random, along with the
final estimated networks using the procedure discussed in Section 7.1. The communities
are estimated for the network with 20% of the edges missing, but are assumed to be known
for the network with 75% of edges missing. Even accounting for this, as one might expect,
the reconstruction is more successful with fewer missing edges.

Fig. 5. Networks with missing edges. Left: network with 20% of edges deleted and its estimate.
Right: network with 75% of edges deleted and its estimate.

9 Applications

In this section, we show how the methods described in this paper work on real data where
the ground truth clusterings are unknown. In this case, we will show the original network,
the network reordered by community then within community degree, and then show the
estimated network.

9.1 Brain networks

Figure 1, which has already been discussed in Section 1, shows a preprocessed DTI scan
from the ADNI database (http://adni.loni.usc.edu). As in (Leinwand et al., 2020), for this
scan, the cortical surface has been parcellated into the 148 regions of the Destrieux Atlas
using FreeSurfer on the T1-weighted MRI scan. Then probabilistic fiber tractography was
applied on DWI and T1-weighted images using FSL software library to obtain a 148× 148
matrix. Each entry in the matrix is the log of the count of white matter fibers connecting
two brain regions.

In contrast to the structural brain network discussed above, Figures 6 and 7 show the
functional brain networks of subject IDs 293 and 108 from (Brown et al., 2012), two pre-
processed fMRI scans from the ADHD-200 sample. Both networks come from females,
where one is age 10.73 and typically developing, and the other is age 10.81 with ADHD.
Both are processed using the Athena pipeline resulting in 190 regions. More details about
preprocessing can be found at http://umcd.humanconnectomeproject.org.

The most obvious difference between the results is the ADHD network is split into
4 communities, while the typical network breaks into 5 communities. Looking at the
typical network, we see clearer negative associations between communities than in the
ADHD network, particularly accounting for the slightly different axes. The estimate of
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both networks shows some “plaid” looking patterns, as opposed to colors monotonically
changing in one direction, which indicates the ordering of Ψ values within communities
may not be the same as the ordering of Ψ values between communities. More defined
communities and greater negative association patterns in the typical scan would appear to
support the hypothesis that ADHD subjects exhibit less modular brain organizations than
typical subjects.

Fig. 6. ADHD brain network.

Fig. 7. Control brain network.

Figure 8 shows the control network rearranged and estimated based on WSBM commu-
nity detection, using the Matlab package accompanying (Aicher et al., 2013) and (Aicher
et al., 2015). Our model does require prespecification of the number of communities
nor the distribution of edge weights within or between communities, but for the sake
of comparison, we instruct their package to mimic the structure of our results as best
as possible, segmenting the network into 5 communities, ignoring the edge distribution,
and assuming the weight distribution is Normal. WSBM appears to cluster nodes such
that the induced subnetworks have edge weights confined to a relatively narrow band
of values, which gives the impression of more solid colors and fewer gradients in the
rearranged matrix. It also produces relatively evenly sized clusters. Using an L maximizing
algorithm, on the other hand, produces a larger community containing almost half of the
nodes. The L maximizing communities produce a measure value of 6580 compared to
3276 for the WSBM communities. Implementing the estimation methods from Section
4, the mean squared error of the final estimated matrix in Figure 7 is .024 compared to
.033 if using the WSBM estimates. The WSBM communities also yield larger σ̂ values.
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Fig. 8. From left to right: control brain network reordered by communities estimated using WSBM.
The same network reordered by communities estimated using an approximate L maximizing
algorithm. The confusion matrix of node labels between these community estimates (note that label
values do not reflect ordering).

This provides evidence that the community detection using the measure L is capturing
something different than WSBM community detection, and likely a signal more suitable
for the estimation methods described in this paper. Further experimentation has shown that
WSBM community detection of plot A in Figure 3 does not match the intuitive visual
clustering. Functional brain networks may not be organized according to an NSM or LSM,
but the presence of detectable negative associations merits further investigation.

9.2 State to state migration “affinity”

Taking the state-to-state migration flows data from the 2017 American Community Survey
1-Year Estimates and dividing each cell in that table by the outgoing state’s total outflows
gives a transition probability matrix for those people who left their state in 2017. For the
network shown in Figure 9, this transition probability matrix is added to its transpose
to get a symmetric matrix. This final network ignores the direction of greater inflows or
outflows, but instead represents the “affinity” between the two states in question. The
results show geographic communities which appear to give a reasonable segmentation
based on geography. The estimated network displays positively associated within com-
munity dynamics, indicating both homophily and degree correction. However, the within
community σ̂ estimates are relatively large for this network, so these estimates have a
relatively narrow range. This may be due to small subnetwork size, but also because some
of the largest values lie in the interior of the subnetworks, rather than on the frontier.

Fig. 9. 2017 state to state migration.
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10 Conclusions

We have introduced new models for dense weighted networks, wherein edge weights
depend on node sociabilities and community memberships. The development of these
models spurred estimation techniques for networks of this kind. With minor modifications,
these estimation techniques appear to be applicable to an even broader class of networks
than those introduced in this paper. Furthermore, one can use the results from (23) as a
gauge of whether the described estimation process is appropriate for a particular network.

One potential consideration for future work is determining whether Ψ values should
be estimated at the global or local level. In a case where each node’s Ψ value is globally
consistent, estimating it across the whole network would be preferred to estimating several
local estimates. However, given potentially different H-functions across different subnet-
works, pooling this information is not necessarily straightforward. Similarly, a different
kind of information pooling may also play an important role for modeling the dynamics
of a given network observed repeatedly over time. The introduced models may also lend
themselves to extensions for more generalized forms of graphs such as multilayer networks
or – following up on Appendix E – hypergraphs.
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Boucheron, Stéphane, Lugosi, Gábor, & Massart, Pascal. (2013). Concentration inequalities: A
nonasymptotic theory of independence. Oxford University Press.

Brown, Jesse, Rudie, Jeffrey, Bandrowski, Anita, Van Horn, John, & Bookheimer, Susan. (2012).
The ucla multimodal connectivity database: a web-based platform for brain connectivity matrix
sharing and analysis. Frontiers in neuroinformatics, 6, 28.

Desmarais, Bruce A., & Cranmer, Skyler J. (2012). Statistical inference for valued-edge networks:
The generalized exponential random graph model. Plos one, 7(1), e30136.

Fan, Xuhui, Xu, Richard Yi Da, & Cao, Longbing. (2016). Copula mixed-membership stochastic
blockmodel. Page 1462–1468 of: Proceedings of the twenty-fifth international joint conference on
artificial intelligence. IJCAI’16. AAAI Press.

Fosdick, Bailey K., & Hoff, Peter D. (2015). Testing and modeling dependencies between a network
and nodal attributes. Journal of the american statistical association, 110(511), 1047–1056.

Gao, Chao, Ma, Zongming, Zhang, Anderson Y., & Zhou, Harrison H. (2018). Community detection
in degree-corrected block models. The annals of statistics, 46(5), 2153–2185.

Hsu, Daniel, Kakade, Sham, & Zhang, Tong. (2012). A tail inequality for quadratic forms of
subgaussian random vectors. Electronic communications in probability, 17(52), 1–6.

Johnstone, Iain M. (2001). Chi-square oracle inequalities. Pages 399–418 of: de Gunst, M.C.M.,
Klaasen, C.A.J, & van der Vaart, A.W. (eds), State of the art in probability and statistics, festschrift



22 Benjamin Leinwand and Vladas Pipiras

for willem van zwet, lecture notes-monograph series, vol. 36. Institute of Mathematical Statistics,
Lecture Notes, Monograph Series.

Karrer, Brian, & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in
networks. Physical review e, 83(1).

Kumar, Srijan, Spezzano, Francesca, Subrahmanian, V. S., & Faloutsos, Christos. (2016). Edge
weight prediction in weighted signed networks. Page 221–230 of: 2016 ieee 16th international
conference on data mining (icdm). IEEE.

Leinwand, Benjamin, & Pipiras, Vladas. (2021). Supplemental technical appendix to “block dense
weighted networks with augmented degree correction”.

Leinwand, Benjamin, Wu, Guorong, & Pipiras, Vladas. (2020). Characterizing frequency-selective
network vulnerability for alzheimer’s disease by identifying critical harmonic patterns. Pages 1–4
of: 2020 ieee 17th international symposium on biomedical imaging (isbi). IEEE.

Ng, Andrew Y., Jordan, Michael I., & Weiss, Yair. (2001). On spectral clustering: Analysis and
an algorithm. Pages 849–856 of: Proceedings of the 14th international conference on neural
information processing systems: Natural and synthetic.

Noroozi, Majid, Rimal, Ramchandra, & Pensky, Marianna. (2021). Estimation and clustering in
popularity adjusted block model. Journal of the royal statistical society: Series b (statistical
methodology).

Peixoto, Tiago P. (2018). Nonparametric weighted stochastic block models. Physical review e, 97(1),
012306.

Pons, Pascal, & Latapy, Matthieu. (2006). Computing communities in large networks using random
walks. J. graph algorithms appl. Citeseer.

Sengupta, Srijan, & Chen, Yuguo. (2017). A block model for node popularity in networks with
community structure. Journal of the royal statistical society: Series b (statistical methodology),
80(2), 365–386.

Spyrou, Loukianos, & Escudero, Javier. (2018). Weighted network estimation by the use of
topological graph metrics. Ieee transactions on network science and engineering, 6(3), 576–586.

Vershynin, Roman. (2018). High-dimensional probability: An introduction with applications in data
science. Vol. 47. Cambridge University Press.

Zhu, Boyao, & Xia, Yongxiang. (2016). Link prediction in weighted networks: A weighted mutual
information model. Plos one, 11(2), e0148265.

This extended appendix discusses several topics related to the main paper. Appendix A
contains two concentration inequalities for LSM networks, followed by auxiliary lemmas.
Appendix B discusses estimation while accounting for certain diagonal 0’s for within
community subnetworks, along with how to adapt the estimation procedures when there are
repeated values. Appendix C.1 explains how modularity may fail to characterize the kinds
of communities discussed in the main paper. Appendix C.2 introduces a greedy, agglom-
erative approach to community detection by trying to maximize the measure L. Appendix
C.3 considers community detection as a spatial clustering problem, and Appendix C.4
includes an algorithm built upon spectral clustering to try to maximize L. Appendix C.5
shows that the real parts of the first several eigenvectors of a normalized version of the
network also appear to capture community information. Appendix D displays additional
simulated networks and results. Finally, Appendix E extends both H-functions and the
kinds of “errors” which may be observed in LSMs or NSMs.



Block Dense Weighted Networks with Augmented Degree Correction 23

A Concentration inequality for Normal LSM

In Section 4, we introduced methods for estimating sociability parameters for certain kinds
of network generating models. It would be helpful to ensure these estimates are actually
capturing the underlying “error-free” network generating mechanisms, what we refer to as
the network’s SC. As there are several introduced models, the accuracy of the estimation
results may depend on the specific functional forms of a given network. We present below
a result on estimation accuracy of the SC for a Normal LSM network (8). The estimation
procedure is formulated through theoretical means; it remains to be seen how the procedure
compares to the practical estimation approach taken in Sections 4 and 6. The proof of the
result adapts ideas from (Noroozi et al., 2021).

A.1 Concentration for Normal LSM with known σ2
max

Theorem 1
Let A be a Normal LSM network such that every edge weight is generated as in (8), and
P∗ be the network such that each edge weight has the same generating process as the
corresponding edge weight in A, but with every σ value set to 0. Also let P̂ be the estimated
network (of the form (8) with σ = 0) induced by the clustering of nodes that minimizes

||A− P̂||2F +Pen(n, K̂), (A 1)

where K̂ is the number of different communities in this “best” clustering, and

Pen(n,K) = 6σ
2
max
(
C1nK +C2K2 log(n)

)
+(6C3 +

2
c
)σ2

max(log(n)+n log(K)), (A 2)

where n is the number of nodes in the network, K is the number of communities in
the clustering, c is some constant such that 0 < c < 1, σ2

max < ∞ is the largest variance
parameter of any generating function for edges in network A, and C1 and C2 are as given
in Lemma 1. Then, for some constant C3 and any t > 0,

P
(
||P̂−P∗||2F ≤ (1− c)−1Pen(n,K∗)+

C3

c
σ

2
maxt

)
≥ 1−3e−t . (A 3)

Proof

It is first useful to define the P̂ induced by a particular clustering. Assuming we have
clustered all nodes of A into K̂ estimated communities, we denote the subnetwork including
only edges connecting nodes in estimated community k̂ to nodes in estimated community
l̂ as A(k̂,l̂). Letting 1n be a length n column vector of 1’s, define Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) as the
projection of A(k̂,l̂) of the form (8) with σ = 0 which minimizes the Frobenius norm to the
observed subnetwork, which can be written as

Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) = γ̂
(k̂,l̂)1n̂k̂

1′n̂l̂
+ α̂

(k̂,l̂)Ẑ(k̂,l̂)1′n̂l̂
+ β̂

(k̂,l̂)1n̂k̂
Ẑ(l̂,k̂)′, (A 4)

such that

γ̂
(k̂,l̂), α̂(k̂,l̂), β̂ (k̂,l̂), Ẑ(k̂,l̂), Ẑ(l̂,k̂) = argmin

γ,α,β ,Z1,Z2

||A(k̂,l̂)−(γ1n̂k̂
1′n̂l̂

+αZ11′n̂l̂
+β1n̂k̂

Z′2)||F . (A 5)
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For identifiability purposes, we also mandate the following constraints:

∑ Ẑ(k̂,l̂) = 0, ∑ Ẑ(l̂,k̂) = 0, SD(Ẑ1) = 1, SD(Ẑ2) = 1, α̂
(k̂,l̂) ≥ 0, β̂

(l̂,k̂) ≥ 0.
(A 6)

For this proof, we need not explicitly express every component quantity in (A 5), but note
that Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) has rank≤ 3 by construction. In the between estimated community
subnetworks where k̂ 6= l̂, the estimates P̂(k̂,l̂) = Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)).

However, for within estimated community subnetworks where k̂ = l̂, we must define
Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) slightly differently, so as to ignore any influence from certain 0’s on
the diagonal of A(k̂,k̂). In that case, we keep the pertinent constraints while modifying (A 4)
and (A 5) as follows:

Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) = γ̂
(k̂,k̂)1n̂k̂

1′n̂k̂
+ α̂

(k̂,k̂)Ẑ(k̂,k̂)1′n̂k̂
+ α̂

(k̂,k̂)1n̂k̂
Ẑ(k̂,k̂)′, (A 7)

such that

γ̂
(k̂,k̂), α̂(k̂,k̂), Ẑ(k̂,k̂) = argmin

γ,α,β ,Z
||
(
A(k̂,k̂)− (γ1n̂k̂

1′n̂k̂
+αZ1′n̂k̂

+α1n̂k̂
Z′)
)

u>v||F . (A 8)

This is the projection which minimizes the Frobenius norm to the original subnetwork
only with respect to off-diagonal entries, i.e. where u 6= v. Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) also has
rank ≤ 3, but this projection does not necessarily have 0’s on the diagonal. This gives
rise to within community edge estimates, P̂(k̂,k̂), which is equal to Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) in
the off diagonal entries, but replaces the diagonal entries with 0’s (which are correct by
construction). We also represent this estimate as Π0(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)), where the 0 subscript
indicates the diagonals are forced to 0. P̂(k̂,k̂) is not a projection of A(k̂,k̂), but is closer to
A(k̂,k̂) in Frobenius norm than Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)), which is itself the best projection of
A(k̂,k̂) with respect to the Frobenius norm for off diagonal entries.

The projections defined on the observed network and the estimated communities differ
from the projections we define on P∗ and the estimated communities. In defining

Π(P(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂)), or Π0(P

(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)), we treat the Ẑ values as fixed, using the esti-

mated values from Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)), and only allowing γ̂(k̂,l̂), α̂(k̂,l̂), and β̂ (k̂,l̂) values to
vary.

With these preliminaries in place, we follow the proof of Theorem 1 in (Noroozi et al.,
2021). By assumption,

||A− P̂||2F +Pen(n, K̂)≤ ||A−P∗||2F +Pen(n,K∗).

Letting

Ξ = A−P∗, (A 9)

writing Tr(M) for the trace of matrix M, and assuming the network has been rearranged
into blocks by estimated communities, adding and subtracting P∗ within ||A− P̂||2F on the
left-hand side gives

||P̂−P∗||2F ≤ 2Tr(Ξ′(P̂−P∗))+Pen(n,K∗)−Pen(n, K̂). (A 10)

Noting 2Tr(Ξ′(P̂−P∗)) = 2
K̂
∑

k̂,l̂=1
Tr
(

Ξ(k̂,l̂)′(P̂(k̂,l̂)−P(k̂,l̂)
∗ )

)
, adding and subtracting

Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) to within estimated community subnetworks and Π(P(k̂,l̂)

∗ , Ẑ(k̂), Ẑ(l̂))
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to between estimated community subnetworks yields for the trace term in (A 10):

2 ∑
k̂ 6=l̂

Tr
(

Ξ
(k̂,l̂)′

Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))
)
+2

K̂

∑
k̂=1

Tr
(

Ξ
(k̂,k̂)′

Π0(Ξ
(k̂,k̂), Ẑ(k̂), Ẑ(k̂))

)

+2 ∑
k̂ 6=l̂

Tr
(

Ξ
(k̂,l̂)′(Π(P(k̂,l̂)

∗ , Ẑ(k̂), Ẑ(l̂))−P(k̂,l̂)
∗ )

)
+2

K̂

∑
k̂=1

Tr
(

Ξ
(k̂,k̂)′(Π0(P

(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))−P(k̂,k̂)

∗ )
)
.

(A 11)

We handle the four sums in (A 11) separately. Note that in the between community subnet-
works, Tr

(
Ξ(k̂,l̂)′Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))

)
= ||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂)))||2F since Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))

is a projection. Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) has rank ≤ 3 as noted above, so

2||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))||2F ≤ 6||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))||2op ≤ 6||Ξ(k̂,l̂)||2op, (A 12)

where ||M||op denotes the usual spectral norm of matrix M. The second inequality holds
because the spectral norm is sub-multiplicative, and for a projection matrix P, ||P||op ≤ 1.

When k̂ = l̂,

Tr
(

Ξ
(k̂,k̂)′

Π0(Ξ
(k̂,k̂), Ẑ(k̂), Ẑ(k̂))

)
= Tr

(
Ξ
(k̂,k̂)′

Π(Ξ(k̂,k̂), Ẑ(k̂), Ẑ(k̂))
)
,

as Tr(M′N) = ∑
u,v

MuvNuv and the diagonal of Ξ(k̂,k̂) is all 0’s because there are no self loops

in either A or P∗. With this equivalence, the same argument culminating in (A 12) also holds
for within community subnetworks.

To derive a bound on the first two sums of (A 11), from Lemma 2, we have

P

 K̂

∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op ≤ σ
2
max(C1nK̂ +C2K̂2 log(n)+C3(t + log(n)+n log(K̂)))

≥ 1− e−t .

(A 13)
Moving to the last two sums in (A 11), these can be rewritten in terms of the whole net-

work instead of estimated subnetworks. Slightly abusing notation, let Π(P∗,{k̂}) represent

the full network matrix where all entries are given by the value dictated by Π(P(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))

for between estimated community edges, and by Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) for within estimated

community edges. The last two sums in (A 11) can be represented as

2Tr
(
Ξ
′(Π(P∗,{k̂})−P∗)

)
= 2||Π(P∗,{k̂})−P∗||F |〈Ξ,H({k̂})〉|, (A 14)

where

H({k̂}) = Π(P∗,{k̂})−P∗
||Π(P∗,{k̂})−P∗||F

.

Since for any a,b and for c > 0, 2ab≤ ca2 + b2

c ,

2Tr
(
Ξ
′(Π(P∗,{k̂})−P∗)

)
≤ c||Π(P∗,{k̂})−P∗||2F +

|〈Ξ,H({k̂})〉|2

c
. (A 15)

Denoting the set of partitions of the nodes into exactly K communities as GK , for any fixed
partition G ∈ GK , ∑u,v(H(G)uv)

2 = 1, and the matrix Ξ consists of independent normally
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distributed errors with finite variances. Representing the true communities of nodes u and
v as i and j, respectively, since |〈Ξ,H(G)〉|= vec(Ξ)′vec(H(G)), observe that,

P
(
|〈Ξ,H(G)〉|2 > t

)
= P

(
(

n

∑
u,v=1

σi jεuvH(G)uv)
2 > t

)

= 2P

(
n

∑
u,v=1

σi jεuvH(G)uv >
√

t

)
≤ 2P

(
N (0,σ2

max)>
√

t
)
≤ 2e−t/2σ2

max . (A 16)

Applying the union bound,

P
(
|〈Ξ,H({k̂})〉|2−2σ

2
max(log(n)+n log(K̂))> 2σ

2
maxt

)
≤ P

(
max

1≤K≤N
max
G∈GK

(
|〈Ξ,H(G)〉|2−2σ

2
max(log(n)+n log(K))

)
> 2σ

2
maxt

)
≤ 2nKne−2σ2

max(log(n)+n log(K)+t)/2σ2
max = 2e−t . (A 17)

The squared Frobenius norm matrix ||Π(P∗,{k̂})−P∗||2F in (A 15) can be written as

∑
k̂ 6=l̂

||Π(P(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))−P(k̂,l̂)

∗ ||2F +
K̂

∑
k̂=1

||Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))−P(k̂,k̂)

∗ ||2F . (A 18)

When k̂ 6= l̂, ||Π(P(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))−P(k̂,l̂)

∗ ||F ≤ ||P̂(k̂,l̂)−P(k̂,l̂)
∗ ||F because Π(P(k̂,l̂)

∗ , Ẑ(k̂), Ẑ(l̂))

is the best projection of P(k̂,l̂)
∗ onto the estimated Ẑ(k̂,l̂) and Ẑ(l̂,k̂) values. When k̂ = l̂,

Π(P(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) is also the best projection of P(k̂,k̂)

∗ onto the Ẑ(k̂,k̂) values with respect

to only the off diagonal entries, and the diagonal entries of both Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) and

P(k̂,k̂)
∗ are all 0. Therefore, ||Π0(P

(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))−P(k̂,k̂)

∗ ||F ≤ ||P̂(k̂,k̂)−P(k̂,k̂)
∗ ||F . Combining

this point with those given in (A 14)–(A 17),

P
(

2Tr
(
Ξ
′(Π(P∗,{k̂})−P∗)

)
≤ c||P̂−P∗||2F +

2σ2
max(log(n)+n log(K̂)+ t)

c

)
≥ 1−2e−t .

(A 19)
Let Ω denote the set on which, for a particular t, both events in (A 13) and (A 19) occur.

Then P(Ω)≥ 1−3e−t . Therefore on Ω, by using (A 10),

||P̂−P∗||2F ≤6σ
2
max(C1nK̂ +C2K̂2 log(n)+C3(log(n)+n log(K̂)+ t))

+ c||P̂−P∗||2F +
2σ2

max(log(n)+n log(K̂)+ t)
c

+Pen(n,K∗)−Pen(n, K̂).

(A 20)

Letting 0 < c < 1 and Pen(n,K) as in (A 2), we derive (A 3), that is

P
(
||P̂−P∗||2F ≤ (1− c)−1Pen(n,K∗)+

C3

c
σ

2
maxt

)
≥ 1−3e−t .

This theorem indicates that in the Normal LSM setting, by choosing an appropriate
penalty, one can choose a clustering and the number of clusters such that, with high
probability, ||P̂−P||2F , the squared Frobenius distance between the true generating process
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and the estimate thereof induced by this “best” clustering, is bounded above by a multiple
of the penalty using the true number of communities, accounting for the scale of the
σ values in the network. As might be expected, in a network with many nodes, many
communities, and large σ values, the total distance between the estimate and generating
process for the network enforced by this bound can become large. However, one observes
that by dividing by n2, the distance from the estimate to the truth continues to shrink on a
per edge basis. If K/n→ 0, the estimates are consistent. One drawback is this result relies
on employing a penalty which includes σ2

max, a value which cannot in all cases be assumed
to be known.

A.2 Case with unknown σ2

In practice, we do not know the value of σ2
max. If instead we assume that throughout the

whole network, there is a single value of σ2, we can also estimate that value using the data.
Furthermore, letting K̂ = n and putting each node into its own community, the estimate P̂
will appear to be error free. For any network of interest, this is overfitting, so it is reasonable
to set some restriction on the number of communities relative to the number of nodes. The
following theorem extends Theorem 1 under these new assumptions, where we do not
require prior knowledge of σ2

max.

Theorem 2
In the same setting as Theorem 1, assume the choice of K̂ is restricted such that

C1nK̂ +C2K̂2 log(n)+C3(log(n)+n log(K̂))≤ n(n−1)
4

, (A 21)

where the constants C1,C2,C3 are derived in the same manner as in Theorem 1, but take
on slightly different values here. Additionally, assume network A has a constant variance
parameter σ2. Let P̂ be the estimated network induced by the clustering of nodes that
minimizes

||A− P̂||2F + σ̂
2Pen(n, K̂), (A 22)

where

σ̂
2 =
||A− P̂||2F
n(n−1)

, (A 23)

and the penalty is given by

Pen(n,K) = 4(C1nK +C2K2 log(n)+C3(log(n)+n log(K))). (A 24)

Then, for t > 0,ε ∈ [0,1/2),

P
(
||P∗− P̂||2F ≤

σ2

1− c
(Ct +(1+ ε)Pen(n,K∗))

)
≥ 1−3e−t − e−

3
32 ε2n(n−1). (A 25)

Proof
By assumption,

||A− P̂||2F + σ̂
2Pen(n, K̂)≤ ||A−P∗||2F +σ

2
∗Pen(n,K∗),
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where σ̂2 =
||A−P̂||2F
n(n−1) as in (A 23), and σ2

∗ =
||A−P∗||2F

n(n−1) . The above is equivalent to

||A− P̂||2F
(

1+
Pen(n, K̂)

n(n−1)

)
≤ ||A−P∗||2F

(
1+

Pen(n,K∗)
n(n−1)

)
.

Then, following the proof of Theorem 1 leading to (A 10), we have

||P∗− P̂||2F
(

1+
Pen(n, K̂)

n(n−1)

)
≤ 2Tr(Ξ′(P̂−P∗))

(
1+

Pen(n, K̂)

n(n−1)

)
+
||A−P∗||2F
n(n−1)

(
Pen(n,K∗)−Pen(n, K̂)

)
.

Dividing both sides by 1+ Pen(n,K̂)
n(n−1) and following the arguments culminating in (A 20) but

adjusting constants as necessary, with probability ≥ 1−3e−t :

(1− c)||P∗− P̂||2F

≤ σ
2(C1nK̂ +C2K̂2 log(n)+C3(log(n)+n log(K̂))+Ct)+

σ2
∗Pen(n,K∗)

1+ Pen(n,K̂)
n(n−1)

− σ2
∗Pen(n, K̂)

1+ Pen(n,K̂)
n(n−1)

≤ σ
2(C1nK̂ +C2K̂2 log(n)+C3(log(n)+n log(K̂))+Ct)+σ

2
∗Pen(n,K∗)−

σ2
∗Pen(n, K̂)

1+ Pen(n,K̂)
n(n−1)

,

(A 26)
where the denominator from the second to last term was dropped in the last inequality.

Note that σ2
∗ is the average of n(n−1)

2 squared N (0,σ2) random variables, so its distri-

bution is 2σ2

n(n−1)χ2
n(n−1)

2
. Using a result from (Johnstone, 2001), for ε ∈ [0,1/2),

P
(
(1− ε)σ2 ≤ σ

2
∗ ≤ (1+ ε)σ2)≥ 1− e−

3
32 n(n−1)ε2

. (A 27)

Putting together (A 26) and (A 27), for ε ∈ [0, .5), with probability≥ 1−3e−t−e−
3
32 ε2n(n−1),

(1− c)||P∗− P̂||2F ≤Cσ
2t +(1+ ε)σ2Pen(n,K∗)

+σ
2
∗

 C1

1− ε
nK̂ +

C2

1− ε
K̂2 log(n)+

C3

1− ε
(log(n)+n log(K̂))− Pen(n, K̂)

1+ Pen(n,K̂)
n(n−1)

 . (A 28)

Using (A 21), (A 24), and ε < 1/2, the term in parentheses in (A 28) is bounded by

2(C1nK̂ +C2K̂2 log(n)+C3(log(n)+n log(K̂)))− Pen(n, K̂)

2
≤ 0.

Hence, with probability ≥ 1−3e−t − e−
3

32 n(n−1)ε2
,

||P∗− P̂||2F ≤
Cσ2t +(1+ ε)σ2Pen(n,K∗)

(1− c)
.
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A.3 Auxiliary results

The following results were used in the proof of Theorem 1.

Lemma 1
Let Ξ be a symmetric n× n matrix with 0’s on the diagonal and independent N (0,σ2

uv)

entries above the diagonal, where all σ2
uv ≤ σ2

max. Let Ξ be partitioned into K2 submatrices
Ξ(k,l),k, l = 1, . . . ,K For some constants C1,C2, and t > 0,

P

(
K

∑
k,l=1
||Ξ(k,l)||2op ≤ σ

2
max(C1nK +C2K2 log(n)+C3t)

)
≥ 1− e−t . (A 29)

Proof
For a fixed partition, let ξ and µ be vectors with entries ξk,l = ||Ξ(k,l)||op and µk,l =

E||Ξk,l ||op and η = ξ −µ . Then,

K

∑
k,l=1
||Ξ(k,l)||2op = ||ξ ||2 ≤ 2||η ||2 +2||µ||2.

We start by bounding ||µ||2. Using Theorems 1.1 and 3.1 from (Bandeira & van Handel,
2016), letting nk and nl denote the number of rows and columns respectively in Ξ(k,l),

µk,l =E||Ξ(k,l)||op≤ (1+ε)

(
√

nkσmax +
√

nlσmax +
6√

log(1+ ε)
σmax

√
log(min(nk,nl))

)
for any 0 < ε ≤ 1/2. In other words,

µk,l ≤C0σmax(
√

nk +
√

nl +
√

log(min(nk,nl))),

µ
2
k,l ≤ 3C2

0σ
2
max(nk +nl + log(min(nk,nl))),

||µ||2 ≤ 3C2
0σ

2
max

K

∑
k,l=1

(nk +nl + log(min(nk,nl)))≤ 6C2
0σ

2
maxnK +3C2

0σ
2
maxK2 log(n).

(A 30)
Next, for 1 ≤ k ≤ l ≤ K, ηk,l = ξk,l − µk,l are all independent random variables since all
errors are assumed to be independent. By Theorem 5.8 of (Boucheron et al., 2013),

P(|ηk,l | ≥ t) = P(|ξk,l−µk,l | ≥ t)≤ 2e
−t2

4σ2max ,

so ηk,l is sub-gaussian. Since E(ηk,l) = 0, using sub-gaussianity, from Proposition 2.5.2 of
(Vershynin, 2018), there exists a constant C ≤ 288e such that

E(etηk,l )≤ e
Cσ2

maxt2
2 .

Let η̃ be the sub-vector of η which includes the ηk,l values for 1 ≤ k ≤ l ≤ K. Then,
Theorem 2.1 of (Hsu et al., 2012) ensures that, for any square matrix M, using the same
constant C,

P
(
||Mη̃ ||2 >Cσ

2
max(Tr(M′M)+2

√
Tr((M′M)2)t +2||M′M||opt)

)
≤ e−t .
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Letting M = IK(K+1)/2, this becomes

P
(
||η̃ ||2 ≥Cσ

2
max(K(K +1)/2+

√
2K(K +1)t +2t

)
≤ e−t ,

and since ||η ||2 ≤ 2||η̃ ||2,

P
(
||η ||2 ≤ 2Cσ

2
maxK(K +1)+6Cσ

2
maxt

)
≥ 1− e−t . (A 31)

Combining (A 30) and (A 31),

P
(
|ξ ||2 ≤ 12C2

0σ
2
maxnK +6C2

0σ
2
maxK2 log(n)+4Cσ

2
maxK(K +1)+12Cσ

2
maxt

)
≥ 1− e−t .

Collecting terms yields (A 29).

The following lemma is nearly identical to Lemma 6 in (Noroozi et al., 2021), and serves
the same purpose, to translate the bound in Lemma 1, which is conditional on a particular
partition, into an unconditional bound.

Lemma 2
For any t > 0,

P

 K̂

∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op ≤ σ
2
max(C1nK̂ +C2K̂2 log(n)+C3(t + log(n)+n log(K̂)))

≥ 1− e−t .

(A 32)

Proof
Denoting the set of partitions of the nodes into K communities as GK , for any fixed partition
G ∈ GK , from Lemma 1,

P

(
K

∑
k,l=1
||Ξ(k,l)||2op ≥ σ

2
max(C1nK +C2K2 log(n)+C3x)

)
≤ e−x.

Taking a union bound over all possible partitions and setting x = t + log(n)+n log(K)

P

 K̂

∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op−σ
2
max(C1nK̂ +C2K̂2 log(n)+C3(t + log(n)+n log(K̂)))≥ 0


≤P

(
max

1≤K≤n
max
G∈GK

K

∑
k,l=1
||Ξ(k,l)||2op−σ

2
max(C1nK +C2K2 log(n)+C3(log(n)+n log(K)))≥ σ

2
maxC3t

)

≤
n

∑
K=1

∑
G∈GK

P

(
K

∑
k,l=1
||Ξ(k,l)||2op−σ

2
max(C1nK +C2K2 log(n)+C3(logn+n log(K)))≥ σ

2
maxC3t

)

≤ nKne−t−log(n)−n log(K) = e−t .

B Additional estimation details

B.1 Pre-estimating the diagonal for within community NMF

When applying the methodology described in Section 4.1 to a set of edges within the
same community, symmetry ensures that a = b, so there are no conflicts among estimators.
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There is, however, a need to resolve the fact that no self loops (Wuu = 0) may impact the
estimates of a and α for the within community setting i = j. To avoid this impact, the
values of the diagonal entries Wuu should be imputed before computing the NMF. Were
self loops allowed, the expected value a self loop would be E(Wuu|Z) = 2αZu, so we can
estimate this value while accounting for all diagonal zeros and estimates of other Z’s by
setting

Wuu =

(
2 ∑

v∈i,u6=v
Wuv
)
−
( 1

ni−2 ∑
v∈i,u6=v

∑
q∈i,q6=u,v

Wvq
)

ni−1
, (B 1)

where ni is the number of nodes in community i. Essentially, this takes twice the average
within community edge weight for a particular node u and subtracts out twice the average
non-diagonal edge weight connecting the other nodes in community i. This approximates
twice the impact node u while negating the collective impact of the other nodes.

B.2 Handling repeated edge weight values

In Section 4.3, when estimating the uniformly distributed values of Ĝ(w) in (18) and Ψ̂
( j)
u in

(20), we make an adjustment if we observe the same value multiple times. Let W1 <W2 be
two consecutive sorted values of Wuv’s in the same pair of communities, with Ĝ(W1) =

k
n+1

and Ĝ(W2) =
k+m
n+1 , where m > 1. That is, there are m different edges in the set {Wuv : u ∈

i, v ∈ j,Wuv =W2}. Then, we set

Ĝ(W2) =
k+ m

2 + 1
2m

n+1
. (B 2)

The purpose of (B 2) is to make all the new {Ĝ(Wuv) : u ∈ i, v ∈ j,Wuv =W2} values to be
at least halfway between Ĝ(W1) and the original Ĝ(W2) value, but where more duplicate
values will bring this value down further. When there are no duplicate values (i.e. W1 <

W2 <W3 < .. . <Wn), this formula leaves Ĝ(W2) intact. When duplicate values are present,
there will still be duplicate values after applying (B 2), but they are moved to a different
location between k

n+1 and k+m
n+1 .

If the D j(u) values repeat in (19), we make an analogous adjustment to (20).

C Additional community detection details

In this appendix, more information is provided about community detection for the kinds
of networks described in the main paper, including motivating ideas, algorithms, and some
discussion of why existing community detection methods may be inappropriate in this
setting.

C.1 Limitations of modularity

Many clustering algorithms on networks attempt to maximize modularity, but this may not
be the appropriate measure to use for dense networks. To see this, consider the network
shown in Figure C 10. That figure begins on the left with a network where σ = 0 with
74 nodes in 2 communities exhibiting within community positive association and between



32 Benjamin Leinwand and Vladas Pipiras

Fig. C 10. Reconstructing a network (left) based on different community assignments.

community negative association. Within community edges are drawn from a uniform distri-
bution with a maximum of 150, while between community edges are drawn from a uniform
distribution with a maximum of 100. Node sociability parameters for both communities
range from .05 to .95 in increments of .025. The H-function in the original network is the
same as that used for the rightmost plot in Figure 2, though since the between community
edges have negative association, the inputs to that H-function are 1−Ψu and 1−Ψv. While
the network is not strictly assortative, after accounting for node sociabilities and using
the appropriate inputs, edges between nodes in the same communities have 50% greater
weights than edges between nodes in different communities. In this sense there is some
notion of homophily that is absent in other regimes where modularity fails. Ordered as
in the figure, one can visually identify 2 distinct communities. The second plot from the
left in the figure is the estimate of the left plot using the community assignments when
clustering nodes using the walktrap algorithm of (Pons & Latapy, 2006) with four steps,
which returns three communities, not two. The third plot is the estimate of the first plot
using the community assignments by calculating the leading non-negative eigenvector of
the modularity matrix of the graph. The fourth plot is the estimate of the first plot using
the correct assignments. The modularity of the true communities on this network is in
fact slightly negative. This failure of community detection algorithms will feed incorrect
community labels to the estimation procedure, leading to estimates that don’t preserve the
structure of the original network, as seen in the figure.

The issue is modularity tries to identify highly interconnected nodes, where edge weights
within communities are expected to be higher than edge weights between communities.
The methodology described above needs clusters to have a different property to work
appropriately, namely that the nodes in each community should obey a kind of mono-
tonicity. Nodes in the same community should have similar patterns of connecting to
nodes in other communities, and their own community. In the network in Figure C 10,
all nodes in community 1 “prefer” other nodes in community 1 with high sociability (Ψ)
values, but “prefer” nodes in community 2 with low sociability values. This shared ordering
of preferences over nodes in each community is crucial for ensuring that the estimation
procedure will get appropriate orderings of local sociability statistics.

It is not difficult to construct networks where it would be useful to combine the com-
munity detection using L with modularity. For example, assume communities i and j have
positive association both within community and between the communities, but the within
community edges are generally much larger than the between community edges. Also
assume both i and j have negative association with community k. Clustering nodes to
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simply share ordering of preferences would separate nodes in community k but would not
distinguish nodes in community i from nodes in community j. Subsequently employing a
modularity maximization algorithm on the estimated community consisting of nodes in i
and j would recover the true communities and lead to better estimates for all of the edges
within and between i and j.

C.2 Greedy algorithm for community detection

A direct algorithm for maximizing L in (25) is to try to iteratively combine nodes into
communities which will greedily make L larger. It is computationally impractical to test
every possible partition of nodes to maximize L. However, based on the structure of L,
Algorithm 2 tries to combine communities which are most correlated with one another.

At the start, each node is placed into its own estimated community. The “aggregate
degree” of each estimated community is defined as the total weight of the edges emanating
from any node in the estimated community, where edges are double counted if they connect
two nodes in the same estimated community. In Algorithm 2, the aggregate degree of an
estimated community is equal to the column sum of the estimated community’s corre-
sponding column in the “communityAggregate” matrix. When each node is in its own
estimated community, the aggregate degree of the community is the same as the degree
of the node. In each “round,” the algorithm orders the estimated communities by their
aggregate degrees at the beginning of the round from largest to smallest. Then the algorithm
visits these estimated communities in order, and for each estimated community î, selects a
candidate estimated community ĵ 6= î which maximizes

Cî ĵ = corr

( ∑
u:u∈î

Wuv, ∑
q:q∈ ĵ

Wqv
)

: v ∈V

 ,

where ∑u:u∈î Wuv,v ∈ V , is a length n vector where each entry has the total edge weight
connecting nodes in estimated community î with each node in the network. Estimated
communities î and ĵ are merged if doing so does not decrease the measure L. If î and ĵ are
merged, and if ĵ has not already been visited by the algorithm this round, the algorithm
will visit the combined î and ĵ when it would have visited ĵ. Each round completes after
the algorithm has completed all scheduled visits.

If at least two estimated communities have been merged, the algorithm proceeds to the
next round. If no communities have been merged, the algorithm does a sweep, calculating
Cî ĵ for all estimated communities, and attempts to merge pairs of estimated communities
in decreasing order of C values. As soon as any pair of estimated communities are merged,
the algorithm stops the sweep and proceeds to the next round. Algorithm 2 terminates when
it goes through a full round and a sweep without merging any estimated communities, or
when the number of estimated communities reaches 1.

Two details of the algorithm should be explained further. First, the algorithm does not
require merging communities to increase L because at the outset, when all nodes are in
their own estimated community, combining two communities cannot increase L. Therefore,
requiring a merger to increase L would prevent the algorithm from gaining any traction.
Second, why go through each round instead of constantly sweeping, or better yet just
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combining the estimated communities which would most increase L? In addition to this
proposal being computationally costly, it may also lead to the initial formation of a single
large but overly heterogeneous community since communities can only contribute to L
once they contain three or more nodes. As this is already a greedy algorithm, we view
our design as a means of not overlooking any estimated community, and as a conservative
precaution against premature optimization.

C.3 Spatial clustering

For another perspective on community detection, we represent the original network as a
matrix, and think of each row vector as a point in n-dimensional space corresponding to a
particular node, where n is the number of nodes in the network. Spatial clustering of the
points then gives us communities, which is motivated as follows. Consider two nodes u and
v in the same community with similar Ψ values. For any third node x ∈ j, as u∈ i and v∈ i,
Hi j(Ψu,Ψx) should be similar to Hi j(Ψv,Ψx), thus Wux should be close to Wvx. Therefore,
nodes in the same community with similar Ψ values are expected to have similar edge
weights, so entries in their corresponding rows should be similar in n−2 dimensions (the
exceptions being due to no self loops). Therefore, in this n-dimensional space, two nodes
with the same community and similar Ψ values should be neighbors.

Spatial clustering can be achieved using many existing clustering algorithms. For certain
methods, such as those based on distances, one may need to account for the zeros on
the diagonal by only calculating the distance between two nodes on the remaining n−
2 dimensions. However, as with other spatial clustering problems, there is no algorithm
which correctly clusters the nodes for every possible network.

C.4 Spectral clustering algorithm incorporating L

Appendix C.3 justifies the application of spatial clustering techniques for our networks of
interest. In this section, we focus on one spatial clustering algorithm, spectral clustering,
which we employ in tandem with the measure L in (25), used to choose both a partic-
ular number of estimated communities as well as the best clustering for that number of
communities. If the number of communities K is known, we can follow the methodology
of (Ng et al., 2001). Measure the distance between every column in our network using a
radial basis function kernel. Then construct a neighbors graph based on these distances,
and a Laplacian based on this neighbors graph. Finally, run K-means on the Laplacian to
get clusterings. This can all be done using the existing specc function from the R package
kernlab just by specifying the number of centers, as specc will automatically select a scale
parameter for the kernel. However, as this is not a deterministic algorithm, it can be helpful
to run several replicates and take clustering that maximizes L.

The remaining issue is how to choose the number of clusters, K, which is a priori
unknown. However, we can use the introduced measure L as a measure of clustering
success, so we can impose a simple stopping rule, which is shown in Algorithm 3.
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Algorithm 2: Greedy algorithm using L

Result: { î}
Input: W

1 labels(0) =~0n

2 labels(1) = {1, ...,n}
3 q=1
4 communityAggregate = W
5 while labels(q) 6= labels(q−1) do
6 q++
7 labels(q) = labels(q−1)

8 labelOrder = sort labels by decreasing column sum of communityAggregate
9 while length(labelOrder)> 0 do

10 labels(q), communityAggregate, labelOrder =
attemptMerge(communityAggregate, labels(q), labelOrder)

11 dequeue(labelOrder(1))
end

12 if labels(q) = labels(q−1) then
13 labels(q), communityAggregate = sweep(communityAggregate, labels(q))

end
end

14 finalClustering = labels(q)

Procedure attemptMerge(communityAggregate, labels(q), labelOrder)
15 newLabels = labels(q)

16 newOrder = labelOrder
17 A = newOrder(1)
18 B = argmax

B′ 6=A
corr([communityAggregate(A)], [communityAggregate(B’)])

// [communityAggregate(A)] represents the Ath column in the

communityAggregate matrix

19 mergedLabels = newLabels
20 mergedLabels(mergedLabels = B) = A
21 mergedOrder = newOrder
22 mergedOrder(mergedOrder = B) = A
23 if calculateMeasureL(W, mergedLabels) ≥ calculateMeasureL(W, newLabels)

then
24 newLabels = mergedLabels
25 newOrder = mergedOrder
26 [communityAggregate(A)] += [communityAggregate(B)]
27 Remove [communityAggregate(B)] column from communityAggregate

end
28 return newLabels, communityAggregate,
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Procedure sweep(communityAggregate, labels(q))
29 correlationOrder = sort non-matching label pairs by decreasing correlations of

columns in communityAggregate
30 while length(correlationOrder)> 0 do
31 newLabels = labels(q)

32 A = correlationOrder(1, 1)
33 B = correlationOrder(1, 2)
34 mergedLabels = newLabels
35 mergedLabels(mergedLabels = B) = A
36 if calculateMeasureL(W, mergedLabels) ≥ calculateMeasureL(W,

newLabels) then
37 newLabels = mergedLabels
38 [communityAggregate(A)] += [communityAggregate(B)]
39 Remove [communityAggregate(B)] column from communityAggregate
40 dequeueAll(correlationOrder)

else
41 dequeue(correlationOrder(1))

end
end

42 return newLabels, communityAggregate

C.5 Clustering using normalized network

Another approach to community detection which seems to return interesting results is
as follows: take the network as a whole and normalize each row in the original matrix
by taking Nuv = Auv−Āu•

SD(Au•)
, where Au• represents the row in A corresponding to node u.

Next, calculate the eigenvalues λ1, . . . ,λn of the normalized network N, and note the index
corresponding to the largest difference in the absolute values of the real parts of these
successive eigenvalues, argmax

1≤i≤n−1
|Re(λi)| − |Re(λi+1)|. Keep only the real parts of the first

several eigenvectors corresponding to eigenvalues λ1, . . . ,λi, and look for clusters in this
lower dimensional space.

A normalized version of the network presented in Figure C 10 is shown in the left plot of
Figure C 11. In the right plot of Figure C 11, each point plots a row of the real parts of the
first 2 eigenvectors of this row-normalized network, where the color of the point represents
the true community of the corresponding node.

Plotting each row of these eigenvalues appears to give clearly separate clusters. Nor-
malizing the network so all nodes have degree 1 doesn’t give the same results. The first
eigenvector of the original matrix often represents degree information, so the normalization
to calculate N should discard that degree information, but in the process, it also seems
have some kind of downstream effect on other eigenvectors which helps them to capture
the underlying communities. This phenomenon is not specific to the constructed network
in Figure C 10. Figure C 12 shows a network generated via an NSM with an H-function
combining two exponential random variables, in the style of the third plot in Figure 2,
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Algorithm 3: Community detection using spectral clustering and stopping criterion

Result: { î}
Input: W , replicates
// replicates is the number of times to run specc for each

value of K

1 ∆ = 1; K =0;
2 while ∆ > 0 do
3 K = K ++;
4 clusterGoodness(K) = −∞;
5 index = 0;
6 while index < replicates do
7 index++;
8 candidateClustering = specc(W , centers = K);
9 candidateGoodness =calculateMeasureL(W , candidateClustering);

10 if candidateGoodness > clusterGoodness(K) then
11 clusterGoodness(K) = candidateGoodness;
12 clustering(K) = candidateClustering;

end
end

13 ∆ = clusterGoodness(K) − clusterGoodness(K−1)
end

14 finalClustering = clustering(K−1)

Fig. C 11. Normalized network with implied clustering.

where within community connections show positive association and between community
connections show Simpson association, along with the eigenvectors from the normalized
version of that network. Again, the real parts of the eigenvectors of the normalized network
show a clear separating plane between the two communities, but it is not along one of the
2 dimensions, but rather along a combination of them.

There is some intuition for why clustering based on normalizing the network might
work. Ignoring the diagonal, normalizing the matrix makes each column sum to 0, and



38 Benjamin Leinwand and Vladas Pipiras

Fig. C 12. Network generated via NSM, with the clustering from its normalized version.

have variance 1. Since this is a dense weighted network, there is no true concept of a “hub,”
but instead just a node that has greater edge weights. For this reason, we have no reason
to value one node/dimension over another, and we can avoid having to find complicated
kernels with different variances across different dimensions. If we don’t normalize, the
distance in only one dimension can totally dominate. In the case where all associations are
positive, when doing community detection, we want to ignore degree in favor of preference,
so it makes sense to divide by a standard deviation. In the case where some associations
are negative (or Simpson), extreme Ψ values will indicate greater variance, but again, we
still want to ignore this for the purposes of community detection, so it still makes sense to
normalize. The reason to normalize is since each node is connecting to all (or most) others,
we want to ensure that we are accounting for a given node’s average edge weight and the
variance of the edge weights. In this way, we are still looking for patterns of preferences
across other nodes. By normalizing the columns, we can compare them to one another on
an apples-to-apples basis. A negative weight in the normalized matrix means that the edge
between the reference node and another node is less than the average weight emanating
from the reference node. For the purposes of community detection in this model, this is
really what we care about, that is, patterns across nodes in a given community that show
preferences across nodes throughout the whole network.

These last points also indicate the zeros on diagonal can bring up issues. Imagine a
situation where every other edge weight emanating from a node is extremely large but low
variance. The 0 will shrink the average and increase the standard deviation by a lot, but
it’s purely artificial. If we use a distance between nodes/columns to cluster, it is imperative
to ignore both the rows corresponding to those nodes. If there is actually a relatively large
edge weight between them, that edge weight will be subtracted and squared twice. This is
also purely artificial due to no self loops.

D Additional simulations

D.1 H-Normal LSM with σ = 0

Figure D 1 shows an H-Normal LSM with σ = 0, where the value for within community
edges are equal to 5+3Φ

−1
1 (Ψu)+3Φ

−1
1 (Ψv). The between community edges, assuming u

is in community 1 and v is in community 2, are equal to 8−3Φ
−1
1 (Ψu)+1.5Φ

−1
1 (Ψv). The
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original network is shown on the left. In the middle is the reconstructed estimated network,
which looks nearly identical to the original network. σ̂ is essentially 0 for this network, so
the MSE for each subnetwork is shown on the right.

Fig. D 1. H-Normal LSM with σ = 0, its estimate, and the subnetwork level MSE.

D.2 Varied network

Figure D 2 adds more complexity and departs even further from an H-Normal NSM,
this time with 200 nodes and four communities of possibly different sizes. In this case,
nodes are not assigned Ψ values but i.i.d. Gamma(shape = 5, scale = 10) random values
Γ
(1)
u and Γ

(2)
u = 1/Γ

(1)
u . However, within each community, Γ

(1)
u and Γ

(2)
u are normalized

by dividing by ∑u∈i Γ
(1)
u and ∑u∈i Γ

(2)
u , respectively. Each pair of communities is also

assigned independently a random Gamma(shape =50
√

10, scale = 50
√

10) value Γi j. There
is no mathematical significance to these parameters, they were chosen only to create a
striking image. Within community edges are distributed according to a negative binomial
distribution where the target number of successful trials is 2× Γii and the probability
of success in each trial is (1−Γ

(1)
u )(1−Γ

(1)
v ). “Adjacent” communities in the graph are

distributed according to a negative binomial where the target number of successful trials
is 1.5×Γi j and the probability of success in each trial is (1−Γ

(2)
u )(1−Γ

(2)
v ). Connections

between communities 1 and 3 or between communities 2 and 4 are distributed according
to a Poisson distribution with parameter 100×Γi jΓ

(1)
u Γ

(1)
v . Finally, connections between

1 and 4 are normally distributed with mean 10000× (Γ
(1)
u +Γ

(1)
v ) and variance 1. Though

the original network looks noisy, the estimate seems to capture a smooth approximation.
In fact, in this network, σ̂ is indistinguishable from 0 everywhere, so the MSE of each
subnetwork, shown in the right plot of Figure D 2, would be used for the bootstrap.

Fig. D 2. From left to right: original, reordered, estimate, MSE of each subnetwork.
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D.3 Correlation matrix

In this network, we first generate 3 “lodestar” series L1,L2,L3 of length 1000 composed
entirely of i.i.d. U(0,1) random variables. We create a network with 200 nodes where the
first 50 nodes each get a series which are (to different degrees) positively correlated with
the first lodestar series, and negatively correlated with the second lodestar series. This is
done by calculating the series for node u at time t as

u(t) = β1(u)L1(t)+β2(u)L2(t)+β3(u)L3(t)+
(
1−
√

β 2
1 (u)+β 2

2 (u)+β 2
3 (u)

)
εu(t),

where εu(t) ∼ U(0, .35) is an idiosyncratic term for each node at each time step. For the
first 50 nodes, the β1(u) values are positive and increasing with u, while the β2(u) values
are negative and getting more negative with u, and β3(u) = 0. For the second 50 nodes, the
β2(u) values are positive and increasing with u, while the β1(u) values are negative and
getting more negative with u. The 101st to 150th nodes get series which are increasingly
positively correlated to L3 series and increasingly negatively correlated to L2. Finally,
the last 50 nodes have series which are increasingly negatively correlated to L3. Taking
the correlations of the 200 series, we get the correlation matrix on the left of Figure D 3.
Though the subnetwork between the first and fourth communities may look disordered,
because nodes within each community are relatively correlated with each other, there is
a discernible ordering in that between community subnetwork. Even so, from a practical
perspective, edge weights only take on a narrow range of values near 0 in that subnetwork.

Fig. D 3. Correlation network. From left to right: original, estimate, σ̂ for each subnetwork, MSE
of each subnetwork.

D.4 Edge weights with injected noise

In plot A of Figure D 4, we start with the same underlying network as in Figure 3 but add
Gaussian noise ζuv centered at 0 with a variance of 36 to the final edge weights, not in
“normal” space, so the edge weights in the network can go below 0 and above 150. In plot
B, the added Gaussian noise ζuv has variance 100 for within community edges and variance
225 for between community edges. In both cases, the reconstructed networks recover the
underlying pattern, but the noisier network is estimated more coarsely.

Finally, in plot F, the same network is taken with σ = .05 everywhere and external noise
is included by adding ζuv with variance 36 to the final edge weights. Even in this last case,
the underlying signal is broadly recovered.
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Fig. D 4. The network in plot A of Figure 3 with different values for σ2
ζ

D.5 Multiplying sociability parameters

It may be worth considering alternative models which can generate networks similar to
LSMs and NSMs. For example, if edge weights are generated by multiplying sociability
parameters, some surprising things happen. Ignoring diagonal zeros, if we take the values
from .01 to 1 by .01 on each axis and let the value in the matrix equal the product of the
axes, that results in the leftmost plot in Figure D 5. In other words, if all values are positive,
the result looks like the 4th plot in Figure 2. But if we center each axis to be mean 0 and
recalculate, that produces the second plot in Figure D 5. This is not the intended setting
for the models discussed in this paper, but if we were to treat these networks as such,
in the first case, every node would be put into a single community. In the second case,
those nodes with negative values would be put in a separate community from nodes with
positive values. Using this split and reordering based on within community degree gives
the rightmost plot in Figure D 5.

In principle, were noise added to the edge weights of this network, knowing the true
generating model type might improve estimation, as one may be able to smooth noise out
over more observations by keeping all nodes in one large community. However, even using
the “wrong” communities, our estimation procedure appears to replicate the underlying
network. Even though the generating process for this network is the same across both
estimated communities, separating the second network into two communities is therefore
a reasonable choice, especially since the two communities can be so easily defined. This
kind of pattern only arises when multiplying nodes with positive sociabilities and others
with negative sociabilities, not when all sociabilities have the same sign. While multiplying
sociabilities hints at the idea of negative association, networks generated from these models
are still restricted to symmetric contours of the type seen in the 4th plot of Figure 2.
However, simply multiplying sociability parameters can’t generate networks that have
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Fig. D 5. From left to right: Network generated by multiplying sociability parameters. Network
generated by demeaning sociability parameters then multiplying. Reordering of second network
based on within estimated community degree.

contours of the type seen in the first 3 plots of figure 2, nor can it give positive association
patterns within a community but negative association patterns between communities when
there are more than two communities.

E Higher dimensional H-functions and “failure”

Thus far, we have defined H-functions as a class of functions that take in two uniform
random variables and output another uniform random variable. This model can be extended
to include a broader class of functions.

Definition 3. (d-dimensional H-function.) A function H : (0,1)d→ (0,1) is a d-dimensional
H-function if the inputs are d uniform random variables, and the output is a uniform
random variable which is monotonic in each argument.

Note the H-Normal NSM (10) can be expressed in terms of a 3-dimensional H-function
as:

Wuv = G−1 (H(Ψu,Ψv,ηuv)) (E 1)

with ηuv = Φ1(εuv)∼U(0,1), where

H(x,y,η) = Φ1

(
1√

1+σ2
Φ
−1
1 (h(x,y))+

σ√
1+σ2

Φ
−1
1 (η)

)
, (E 2)

where h(x,y) is a 2-dimensional H-function. The first two plots in Figure E 1 show the
values along the x and y axes of functions which have the form of (E 2) where h(x,y)
is in the schema of (15) such that F1 and F2 are Exponential distributions, and F1,2 is a
Gamma distribution. As “errors” are injected at each (x, y) pair, this can also be seen as a
subnetwork generated via an H-Normal NSM where H(x,y) in (10) is that of the third plot
in Figure 2, and η is injected at the edge level.

The specific H-Normal NSM (14) is a simple example which can be expressed in closed
form as a 3-dimensional H-function as in (E 2) where

H(x,y,η)=Φ1

(
1√

1+σ2
√

1+ρ2
Φ
−1
1 (x)+

ρ√
1+σ2

√
1+ρ2

Φ
−1
1 (y)+

σ√
1+σ2

Φ
−1
1 (η)

)
.

(E 3)
In the network context, ρ defines the relative influence of each of the node sociabilities,
while σ controls the “signal-to-noise” ratio of this 3-dimensional H-function. If one imag-
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Fig. E 1. Discretized 3-dimensional H-functions where axes show x and y but η is drawn randomly
at each (x, y) pair. The 2-dimensional H-function with arguments x and y is the same as in the third
plot of Figure 2. From left to right: H-Normal NSM as in (10) with σ = .05. H-Normal NSM with
σ = .5. Failure with α = .95. Failure with α = .5.

ines observing several instances of the same network given by (E 1) with idiosyncratic
η values, then increasing σ would increase the variance of the individual edge weights
from one instance to another. The 3-dimensional H-function (E 3) can be viewed as a
composition of two 2-dimensional H-functions as follows:

H(x,y,η) = Hσ2(Hρ2(x,y),η),

where Hρ2 and Hσ2 are both of the form (13) but with different variance parameters, as
indicated by their subscripts. All the observations about (E 3) do not depend on using 3-
dimensional H-functions built from normal distributions or even H-Normal NSMs, but
rather one can use any d-dimensional functions similar to (15) where d > 2, with suitable
adjustments based on the chosen distributions F1,F2, and F1,2.

One general method of creating higher dimensional H-functions is by chaining together
lower dimensional H-functions as follows:

H(x,y,η) = F1,2
(
F−1

1
(
F3,4(F−1

3 (x),F−1
4 (y))

)
,F−1

2 (η)
)
. (E 4)

In general, the inner functions F3,F4 do not need to share the same form as the outer
functions F1,F2. In the left plot of Figure E 2, F3, F4 and F3,4 correspond to the third plot
in Figure 2, η ∼ U(0,1) for each edge, and F1, F2 and F1,2 correspond to the rightmost
plot in Figure 2. The right plot of Figure E 2 swaps the roles of the inner and outer 2-
dimensional H-functions in the left plot of Figure E 2. While building higher dimensional
H-functions in this way provides a lot of flexibility, this method may not give simple closed
form expressions, and may not guarantee identifiability.

While the H-Normal NSM is a model with additive “error,” (E 1) is more general. The
following can be used to generate a different kind of “error,” one we shall call failure. In
this context, let

H(x,y,η) = (h(x,y))α
δ

1−α , (E 5)
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Fig. E 2. 3-dimensional H-functions of the form (E 4), where axes represent values of x and y.

where α is a value between 0 and 1, h is a 2-dimensional H-function, and δ 1−α is given
by F−1

α (η) where

Fα(x) =


0, x < 0,

x
1−α

, 0≤ x≤ 1−α,

1, x > 1−α.

Seen another way,

δ =

{
1 with probability α,

η
1

1−α with probability 1−α.

One can see that (E 5) satisfies the definition of a 3-dimensional H-function by taking the
Laplace-Stieltjes (LS) transform of the log of (E 5) with uniform inputs and recognizing
that it matches the LS transform of the log of a uniform distribution. For η ∼ U(0,1), the
model (E 5) can also be written as

H(x,y,η)
d
=

{
h(x,y)α , with probability α,

h(x,y)α ε, with probability 1−α,

where ε is also a uniform random variable. When α = 1, there is no “error;” when α

= 0, there is no degree correction, and increasing α increases the “signal-to noise-ratio.”
As a contrast to the additive “error” regime, in the failure case, when α is large, several
different instances of the same network would share many of the exact same edge weights,
as in expectation, 100× (1−α)% of the edge weights are given precisely by h(x,y)α . The
reason to call this kind of error “failure” is that rather than defining a distribution that is
concentrated near h(x,y) with relatively small variation, even when α is large, there are
infrequent occasions where the value will fall far below the modal value of h(x,y)α . The
injected error will never raise the value greater than h(x,y)α , which also accounts for why
the modal value lies at h(x,y)α rather than h(x,y). This kind of variation is reminiscent of
each component in a system possessing a particular capacity, but occasional component
failures cause that capacity to not be met. Figure E 1 depicts different levels of σ and α

being injected into the third plot of Figure 2.
Consider the example of a road network, where the vertices are geographic locations,

edges are roads, and edge weights are the number of cars that travel along the road each day.
In this case, there should be degree correction, as there should be heavier traffic between
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certain locations than others. However, in addition to random variation for travelers along
each road (which could be represented by additive “error”), on some days, whether due
to accidents, construction, or some other issue, the traffic along certain roads may fall
dramatically. This latter case would be an example of failure. In this case, it may be better
to model the network using a 4-dimensional H-function of the form

H(x,y,η1,η2) = (F1,2,3 (F1(x)+F2(y)+F3(η1)))
α

δ
1−α

2 ,

which would incorporate additive “error” through η1, and failure through δ
1−α

2 , which is a
function of η2. While this would be a valid 4-dimensional H-function in theory, in practice
there may be issues arising from dependence between inputs, such as the probability of
failure being correlated with the additive “error.” Furthermore, one may want to include
other covariates in the H-function which are not completely random, but rather systematic
features, like time, that are different from node sociabilities, for use with tensors rather
than matrices. There are many other kinds of H-functions that can incorporate various
covariates and errors to model specific phenomena. Our goal, however, is not to catalog
these possibilities, but to illustrate the richness and generality of the class of H-functions,
particularly for generating random networks.




